A Guide for Bayesian Analysis in
AD Model Builder

Cole C. Monnahan?
Melissa L. Muradian, Peter T. Kuriyama

November 7, 2014

Abstract

The goal of this guide is to outline and describe the steps needed to conduct a Bayesian analysis
in AD Model Builder. Included are general descriptions of Bayesian inference, priors, work flow and
two built-in MCMC algorithms. We hope that the guide will enable users to take full advantage of the
features of ADMB that are built-in, but not well-documented.
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1 Introduction

AD Model Builder is a fast, powerful software package for fitting complex, nonlinear statistical models[l]ﬂ
The “AD” refers to automatic differentiation, a powerful method for calculating derivatives of the likelihood
to aid in quickly fitting models. While ADMB is designed for maximum likelihood inference, it also contains
the capability of Bayesian inference by numerically sampling from the posterior distribution of a model. This
option may be desired, however the capabilities and options available may be unclear, particularly for new
users. This guide is an attempt to clarify how to run Bayesian analyses for models built with ADMB.

ADMB models, which are compiled C++ executables with a wide variety of runtime arguments, can be
developed in your favorite text editor, or the packaged ADMB IDE. Compiling and running executables can
be done through the terminal, or R users can take advantage of the R2admb package available on CRAN.
This package creates an R to ADMB interface useful for compiling and running models, and reading results
back for plotting or post-processing. This guide assumes the user is comfortable building, compiling and
running ADMB models to get maximum likelihood estimates of parameters and standard errors. See the
official documentation on the ADMB website for more information if you are unfamiliar with this aspect
of the software. We further assume a base level of knowledge of the Bayesian philosophy and numerical
techniques, although we do provide a brief introduction and description of the algorithms available to the
user.

This guide began because we use ADMB to run Bayesian models for our own research, and we needed to
look into the source code to fully understand some of the behavior and options availableﬂ The writeup arose
as a way to cement our understanding of the internal workings of ADMB, and as a way to give back to a free
product. This guide is unofficial, informal, and most importantly open source; we welcome and encourage
users to contribute to this guide to further document the Bayesian capabilities of ADMB, or other parts of the
ADMB project. The development contents of this document available on a |Github repository maintained by
Cole Monnahan. Improvements can be merged directly to the Rnw file (knitr), and suggestions submitted
as issues on the Github page.

2 Bayesian inference

A full description of Bayesian inference is beyond the scope of this guide, and we encourage users unfamiliar
with it to seek more appropriate sources. In general, Bayesian inference is a method of statistical infer-
ence used to quantify the full range of uncertainty around both models and parameter values, and formally
incorporate prior information with observed data. It uses the same likelihood function as the maximum
likelihood method of inference, but also explicitly combines prior information, typically as posterior proba-
bility distributions from previous studies, to create a probability distribution for the parameters (called the
“posterior”).

Markov chain Monte Carlo (MCMC) is a common numerical algorithm used to sample from posteriors
of complex and high-dimensional probability distributions, particularly where an analytical solution is in-
tractable. ADMB implements two different MCMC algorithms: the ubiquitous Metropolis-Hastings and a
Hamiltonian (or “hybrid”) sampler, both briefly described in this guide.

The goal of MCMC algorithms is to draw samples from the posterior distribution, from which inference
(e.g. parameter estimates and credible intervals) can be done. In a sense it can be thought of as a numerical
integration technique. While MCMC is very flexible, it can be highly inefficient, needing thousands or
millions of function calls to get a sufficiently well-defined posterior for reliable inference. As such, the idea

Isee http://admb-project.org/
2See the API for a convenient way to explore the [source code
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of tuning the MCMC chain to be more efficient can be important to reduce runtime, and we discuss this in
the context of ADMB for both MCMC algorithms. If the chain is not tuned properly, samples taken from it
could lead to invalid inference. The responsibility is on the user to verify the validity of samples
from a MCMC chain. The R package CODA is a commonly used tool for checking MCMC diagnostics
such as autocorrelation. Think of ADMB as a tool to generate posterior samples, and these must then be
validated and inference calculated by the user.

3 Priors

As with any Bayesian analysis, priors are a key component of the posterior for ADMB and should be
explicitly declared in the .tpl file. The posterior density is proportional to the product of the likelihood
and priors. ADMB works in negative log space, so the contribution of priors is incorporated into the model
by adding the negative log of the prior density to the objective function. If priors are added, the minimum
point is no longer the maximum likelihood estimate, but rather what we informally refer to as the mode
of the posterior density (or more simply the posterior mode) — i.e. the parameters corresponding to the
highest point of the posterior (or lowest point on the — log posterior surface). The difference between the
two is subtle, but there are important philosophical differences: with Bayesian analysis ADMB is integrating
across the posterior parameter space, while the likelihood framework uses minimization of the likelihood to
get parameter estimates and asymptotic assumptions for confidence intervals.

When running an MCMC in ADMB, users are not forced to explicitly define and incorporate priors
into their model. In this case “implicit” priors are still affecting the posterior. In particular, unbounded
parameters without explicit priors have infinitely-broad uniform priors (an example of an “improper” prior
because it will not integrate to 1). Another example is a variance parameter estimated in log space and
then exponentiated within the model to keep it above zero. An implicit uniform prior on the log parameter
will provide different prior information than if the parameter were on the natural scale. The implications
of these issues are contentious and certainly beyond the scope of this guide. We caution users to carefully
consider and explicitly acknowledge their priors — ADMB will not force you to.

Bounding a parameter automatically incorporates a uniform prior without changing the objective function
calculation, since values outside the bounds have zero probability. Other forms of prior distributions must
be added manually with, or without, any constants. For instance, a normal (N (u, 02)) prior on a parameter
a could be added as f+=pow((a-pu),2)/(2*pow(c,2));, where the constants have been dropped and f is
the objective function.

4 Markov chain Monte Carlo (MCMC) in ADMB

MCMC is the only form of built-in Bayesian analysis available to users of ADMB, although a wide variety
of algorithms exist for other software platforms. John Kruschke has a simple example that illustrates
the mechanics of the Metropolis-Hastings algorithm[2]. A politician lives on a long chain of islands. The
politician’s goal is to stay in the public eye by traveling to each island proportional to their relative population.
In other words, he will spend more time on highly populated islands and less time on less populated islands.
He flips a fair coin to propose a move to an island east or west of his current location. If the proposed island
has a higher population than his current island he moves. If the proposed island has a smaller population
than his current island he will only move with a probability Ppy.op/Peyr where Py, is the population of the
proposed island and P,.,, is the population of the current island.

MCMC algorithms work in this same general way. The algorithm starts at a set of parameters, and then
proposes a new parameter set. The algorithm moves to the proposed state, or not, depending on its density
relative to the current state. Just like the politician, the algorithm will spend most of the time in states
with high densities.

4.1 Work flow

The R package R2admb contains some useful functions for streamlining the work flow of MCMC in ADMB
by using R. For users who wish to have more manual control, the following steps outline a typical work flow.



1. Build, run, and verify your ADMB model. This model should explicitly include the contribution of the
priors to the objective function, such that the ADMB point estimates are the posterior mode, rather
than a maximum likelihood estimate.

2. Run an MCMC using the command line argument -mcmc N -mcsave Ngaye (see Table 2 for more
runtime options). The unsaved draws are discarded, leaving a total of Nyut = N/Ngave saved draws.
For example, -mcmc 1e6 -mcsave 2000 will run 1 million draws but only save every 2000th (i.e. “thin”
the others), for a total kept of Ny, = 500.

3. After completion, run the model again with argument -mceval. This command tells ADMB to loop
through the saved iterations (in the .psv file) and execute in the mceval phase().

4. Pull results into R, Excel or other program to ensure the sample is sufficiently thinned, either visually
or with tools using, for example, the CODA package.

5. If necessary, rerun the chain with more thinning, drop the first part of the chain as a “burn-in,” or run
longer for more saved draws.

6. Make whatever Bayesian inference is desired using the Ny, independent samples. For instance, calcu-
late the median and 95% credible interval for parameters or derived quantities (functions of parameters),
or plot pairwise parameters to explore correlation.

4.2 MCMC Arguments

ADMB has a suite of arguments available to the user at run time. We cover the most commonly used ones
in table [1} and refer the user to the ADMB manual and other documentation for further options.

-mcmc N Run N MCMC iterations

-mcsave N Save every Nth MCMC iteration

-mcscale N Rescale step size for first IV iterations

-mcmult N Rescale the covariance matrix

-mcpin <file> Start algorithm from values in jfile;,

-mcrb N Reduce high parameter correlations (see [5.4.4)

-mcprobe X Use a fat-tailed proposal distribution (see[5.4.3)
-mcdiag Use a diagonal covariance matrix

-mcnoscale Do not scale the algorithm during

-mcscale N Scale the algorithm during the first IV iterations

-mcu Use a uniform distribution as proposal distribution.

Table 1: ADMB runtime arguments for the Metropolis-Hastings MCMC

4.3 MCMC Phases

ADMB is designed with two phases that are used to produce MCMC output: (1) the mcmc phase and (2)
mceval phase. In our experience, the use of these phases is not common among other MCMC software and
may be a source of confusion for new ADMB users. However, they provide a powerful and efficient framework
for MCMC analyses.

Most people are already familiar with the operations performed in the mcmc phase. This is where ADMB
uses an algorithm to draw samples (parameter vectors) from the posterior. New states are proposed using
one of two built-in algorithms: see section [5] and [f] During this phase, the Ny saved parameter values are
written to a .psv file (described below). Note that if -mcsave Ngaye is not specified at runtime, ADMB will
run the MCMC but no values will be saved.

The mceval is an optional phase that is designed to be run after the .psv file has been produced.
During this phase, ADMB loops through the Ng,; parameter combinations in the .psv file and reruns the
PROCEDURE_SECTION. This phase is extremely powerful because it allows the user to minimize runtime by
partitioning calculations into two groups: those that affect the objective function (i.e. posterior calculations)



and those that do not. Calculations done for discarded draws (which typically comprises most iterations)
simply slow down the analysis, and as such should be minimized as much as possible. For example, a user
may want to extrapolate (e.g. project a value into the future, given current parameters) or calculate values
derived from the parameters and intermediate values. Placing these calculations inside an mceval_phase
clause means they will only be performed on each saved draw. The mceval_phase() is a function that
returns TRUE if ADMB is running in that mode and FALSE otherwise. For example it can be used as follows:

PROCEDURE_SECTION
// model predictions, likelihood calculations, and prior contributions

if (mceval_phase()){
do_projections(); // or other calcs only needed for saved draws
}

... // other sections

Thus, an analysis can be made to run faster by minimizing total calculations in the mcmc phase. In
practice, some chains need to be thinned significantly more than 1 in 1000, so the runtime saved can be
substantial, especially if the calculations in the mceval _phase are time consuming.

While the mceval phase was designed specifically for MCMC analyses, it can be co-opted for use in
other types of analyses. In essence it is a convenient framework in which to get ADMB to quickly evaluate
arbitrary sets of parameters, while only initializing once. Examples of alternative uses are the SIR algorithm,
evaluating a grid of points for plotting and exploration of the posterior surface, or trying random parameter
sets to investigate local minima. Getting ADMB to evaluate these parameter sets is as simple as writing
them to the .psv file and then executing ADMB with the option -mceval. See section for details on
how to do this.

4.4 Output files
4.4.1 Meta data: The hst file

A file named <model name>.hst is produced which contains the marginal distribution of each object of type
sdreport displayed as two columns under the header of the associated sdreport variable. This distribution
is created by binning the observed values of each sdreport variable, over the entire MCMC chain, into a
histogram and then scaling the area under the curve to equal 1. In the .hst file, the first column reports
the mid-point of each bin and the second column reports the associated density.

The structure of the .hst file is organized so that if a chain is restarted using the -mcr option (see section
, all values needed to bin the subsequent MCMC samples into the original histogram are automatically
read, so that the values in the final .hst file reflect the observed values, and therefore the marginal distri-
bution, of the complete chain. The first element reported in the .hst file is the total number of iterations of
the MCMC chain, Nyeme, used to create the reported marginal distribution, and the second element is the
final step-size scaling factor used for the jump function. The remainder of the elements are only useful for
constructing the reported histogram.

An important note about using the .hst file: The reported means and standard deviations are necessary
to the internal algorithm that creates each sdreport variable’s histogram and are calculated using only
a small number of the initial iterations of the chain. Therefore these values are inappropriate to report
as model results. The user has two ways to obtain the posterior median and credible intervals for each
sdreport variable. The user can manually export the marginal distribution from the .hst file into an input
file external to ADMB (e.g. .csv to R) and calculate the quantiles, etc. Alternatively, the user can write each
sdreport variable’s (saved or total) draws during the mceval phase to a .csv by declaring an 10 object.
More information can be found in the derived quantity draws section This .csv can then be read into
R and manipulated to produce a histogram of the observed values.

If the user is writing the saved sdreport variables to file, then the only pieces of information in the .hst
file that are useful are the first two elements, Ny cme and the final step-size scaling factor.



4.4.2 Parameter draws: The psv file

During the mcme phase, saved parameter values, in bounded space, are written to a binary file called <model
name>.psv. This file can be read into R using the following commands:

psv <- file("<model name>.psv", "rb")

nparams <- readBin(psv, "integer", n = 1)

mcme <- matrix(readBin(psv, "numeric", n = nparams * Nout), ncol = nparams,
byrow = TRUE)

close(psv)

The first element in the .psv file is the number of active parameters in the model, which then tells R how
to parse the following elements into parameter values. Note that the value of N,y in nparams*Nout depends
on Nmcmc and mcsave and must be specified manually. This is the main file that was designed to be used
to extract MCMC draws from ADMB. However, this file only contains parameter values and not derived
quantities or other quantities of interest (e.g. M SY or biomass trajectories) which often are of interest.

4.4.3 Derived quantity draws

Often the posterior distribution for quantities other than the parameters are desired. Examples of derived
quantities are: functions of parameters, properties of the model, or model projections/extrapolations.

A simple way of extracting this information is to bypass the psv file altogether and use a C++ function to
write a .csv file containing whichever quantities are desired. This can be accomplished inside the ADMB
.tpl file with just a few lines of code. Inside the DATA_SECTION section use the following code to create an
1O object that writes values to a .csv file, similar to the function cout which prints to screen.

' ICLASS ofstream MCMCreport ("MCMCreport.csv",ios::trunc);

Then, inside the PROCEDURE_SECTION the function can be used to write both parameters, derived quantities
(sdreport variables, etc.), or other information about the model. For example, during the mceval phase we
may want to write the model parameters, model objective function, and function of parameters to file. This
can be accomplished as follows:

if (mceval_phase()){
if (header==1) {
MCMCreport << "a,b,f,ab" << endl;
header=0;

}

MCMCreport << a <<"," << b << "," << f << """ << ab << endl;

}

In this case the parameters a and b are saved, along with the negative log-likelihood (f) and product
of the model parameters (ab). The MCMCreport object is used just like cout and is executed only during
the mceval phase so that only saved values are written to the file as ADMB iterates through each saved
parameter during that phase. The variable header is declared and set to 1 in the GLOBALS_SECTION as int
header = 1;. Naturally, this strategy can be used anywhere in the procedure section, and this may be a
useful diagnostic tool in some situations. The csv is recreated at each execution if ios::trunc is used.
Alternatively, new draws are appended to the bottom of the csv with ios: :app; this option is particularly
useful when restarting an MCMC chain. If the append option is used, but the corresponding csv doesn’t
exist in the working directory, the file is created and filled.

4.5 Convergence diagnostics

There exist important convergence diagnostics to assess whether an MCMC chain has not “converged”
(roughly speaking this means it is producing independent samples from the posterior). There are a few key
diagnostics to check: 1) whether enough of the initial samples have been discarded as “burn-in”, 2) how much



auto-correlation exists in the saved samples. Using the saved parameter values, histograms and trace plots
for each parameter should be created and reviewed, perhaps using the CODA package [3]. Invalid samples
(e.g. not converged, stuck on bounds, during tuning phase) can lead to invalid inference, so we stress the
importance of diligently checking properties of the chain outside of ADMB.

The first few iterations of a chain should be discarded as “burn-in”; the period where the algorithm
is adjusting the jump function in order to best explore the posterior space. A general rule of thumb of a
20%-50% burn-in is often recommended. However, this is typically not required for ADMB since it starts
from the posterior mode (a region of high probability density, see , whereas many other MCMC software
platforms start from arbitrary places and the chain spends a long time moving to the area of high density. At
a minimum values during which the chain is being tuned should be discarded. After the samples judged to be
from the burn-in period have been manually discarded, trace plots should be trendless, in that consecutive
samples should not be correlated.

If autocorrelation exist in the samples even after the burn-in has been removed, then the chain should
be run over again with a greater thinning rate, e.g. from -mcsave 10000 to -mcsave 50000. This step is
crucial to obtain a final chain of independent samples. If there still exist strong trends in the trace plots,
there is correlation between two or more parameters. Correlation between parameters can be seen using the
pairs () plotting function on an memce object in R.

More information on these concepts and examples are given in sections and

4.6 Resuming a chain

The MC resume command, -mcr, allows the user extend sampling along a previously run MCMC chain. Say
that the user has run a short (N = 10,000) chain, checked autocorrelation diagnostics, and concluded that
the thinning rate is appropriate. Rather than restarting a new chain and discarding these 10,000 iterations,
the user can pick up an existing chain where it left off with the command -mcr. Alternatively, if further
thinning is needed, the user can continue an existing chain and thin outside of ADMB after the chain is
complete.

Resuming a chain is simple, and only requires adding -mcr to an MCMC statement. Let’s save ten values
from a chain using the “simple” model (a contrived linear model packaged with ADMB), saving every 20th
value with a seed of 30.

simple -mcmc 200 -mcsave 20 -mcseed 30

Now say that we want to resume the chain, still saving every 20 values until we have 20 saved parameter
draws. In order to save ten additional draws we will run 200 more additional iterations by adding -mcr (see
Section 2.1 in the ADMB manual).

simple -mcmc 200 -mcsave 20 -mcr

One nuance of -mcr is that starting then resuming a chain does not result in the same samples as a long
chain. For example if we run 400 iterations of a chain, saving every 20, and setting the seed at 30 with the
command:

simple -mcmc 400 -mcsave 20 -mcseed 30

we end up with different values from the started and resumed chain (Table [2). Users should note the
differences between the last half of the “resumed” chains and the “long” chains. This disparity can have
important implications for reproducibility.

Resuming chains with -mcr can reduce computation time. Adding the command -noest can save further
computation time as minimization is unnecessary for resumed chains. Adding the command -nosdmcmc can
also save computation time, but the original chain must have been run with -nosdmcmc. Otherwise, ADMB
will try to read non-existent histogram data (found in the .hst file).



a-first Db-first a-resumed b-resumed a-long b-long

1.91 4.08 1.91 4.08 1.91 4.08
2.00 4.78 2.00 4.78 2.00 4.78
2.08 3.40 2.08 3.40 2.08 3.40
1.85 4.35 1.85 4.35 1.85 4.35
1.88 4.31 1.88 4.31 1.88 4.31
1.86 4.94 1.86 4.94 1.86 4.94
1.89 2.18 1.89 2.18 1.89 2.18
2.62 0.78 2.62 0.78 2.62 0.78
2.16 2.99 2.16 2.99 2.16 2.99
1.94 3.49 1.94 3.49 1.94 3.49
0.00 0.00 0.33 -1.25 2.10 2.71
0.00 0.00 2.31 1.02 1.90 4.38
0.00 0.00 1.93 3.36 1.91 4.00
0.00 0.00 1.73 5.22 2.08 4.00
0.00 0.00 1.59 6.24 1.59 5.48
0.00 0.00 2.16 3.08 1.72 5.47
0.00 0.00 1.83 3.24 1.66 5.69
0.00 0.00 1.95 4.12 2.26 3.02
0.00 0.00 1.76 4.55 1.74 4.69
0.00 0.00 1.82 5.21 2.38 2.51

Table 2: Parameter draws from the simple model. The “first” columns are saved parameter draws from a
short chain, Nyut = 10. The values from the "resumed” chain were created using the -mcr option, where
they pick up from where the first chain left off, Ny, = 20. The values shown from the “long” chain were
completed in a single run (not resumed with -mcr and set to match the total number of iterations and
thinning rate from the “reduced” chain.)

4.7 Starting values

For many Bayesian software platforms, the MCMC algorithms are started at user-specified or arbitrary
places. ADMB has the advantage that it can robustly estimate the posterior mode and the covariance at
that point. This information is very valuable in initializing the MCMC chain.

Specifically, an MCMC chain starts from the posterior mode and uses the estimated covariance matrix
in its proposed jumps (see the algorithm sections below). As such, ADMB chains typically do not need a
long period to reach areas of high density. However, we caution the user to always check the MCMC output
as other issues may lead to a chain that needs a longer burn-in.

The user can specify starting values via the command line option mcpin <file> which must point to a
file with starting values for parameters.

5 Metropolis-Hastings MCMC

The default MCMC algorithm used by ADMB is the Metropolis-Hastings (MH) algorithnﬂ This algorithm
has been around for decades, is simple to implement, and used widely.
This algorithm will be most efficient when the posterior surface mimics a multivariate Normal distribution.

3Technically it has a symmetric proposal, a special case known as the Metropolis algorithm.



5.1 Algorithm

Let
f = the ADMB objective function
¢ = an unknown normalization constant
Xcur = current parameter vector
Xprop = & proposed parameter vector
U = a randomly drawn uniform value in [0,1]
Then F(Xoron)
c
X if U < 2Pl
Xnew = prop ~ of (Xewr) (1)

Xeuwr  otherwise

The proposal (or “jump”) function proposes new parameter vectors given the current set. The default
behavior for ADMB is to use a multivariate normal distributionf] centered at the current vector:

Xprop ~ MV N (Xeur, 2)

where Y is the covariance matrix obtained by inverting the Hessian at the posterior mode.

5.2 Console output
When running an MCMC chain from the console, the output similar to the following will appear.

Initial seed value -36519

-14.9642 -14.9642

mcmc sim 1  acceptance rate 0 0

-15.4843 -15.4843

mcmc sim 201 acceptance rate 0.517413 0.52
increasing step size -1.32761

-15.7798 -15.7798

mcmc sim 401 acceptance rate 0.428928 0.34

First, ADMB prints the random seed used, and then the negative objective function value twice (for reasons
we do not understand). The next line contains the simulation number and the global and local acceptance
rate (both 0 at the start). The global value is the acceptance rate of all samples up until that point, while
the local rate is only for the previous 200. The chain will often have different acceptance rates in different
regions of the parameter space, which would be reflected in the local rate changing. ADMB scales (tunes)
the jump function to try to get this local rate, which in this case meant increasing the step size after the first
200 iterations (in effect proposing more distant values). See section for more information on tuning the
acceptance rate. The value printed after the step size increase is the log of the determinant of the Cholesky-
decomposed rescaled covariance matrix. In some cases this information may be useful for troubleshooting,
but for most practical purposes it can be ignored.

5.3 Example MCMC

We demonstrate these concepts using the “simple” model packaged with ADMB, which is a contrived two
parameter linear model (y = ax + b). First we run the model without any thinning by specifying mcsave=1
(figure [1). The MCMC chain is clearly autocorrelated from the acf plots and the traces (not show). This
chain needs to be tuned to achieve independent samples.

4Technically a bounded multivariate normal, operating in a transformed parameter space via the Cholesky decomposition
of the covariance matrix, but we ignore that here for simplicity and clarity.
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Figure 1: The samples from a simple model with -mcsave 1. Note the high autocorrelation of both param-
eters.The red ellipses show the estimated pairwise parameter covariances, and the red point the MPD.

5.4 Tuning the Metropolis-Hastings algorithm

The goal of “tuning” the algorithm is to obtain independent samples from the posterior, with as few of
calculations as possible (to keep runtime manageable). For the Metropolis-Hastings algorithm, there are
several ways the user can tune a chain.

5.4.1 Thinning rate

For the Metropolis-Hastings algorithm, the most important tuning option available to the user is the saving
rate (the inverse of the thinning rate). This is the rate at which parameters are saved, such that thinning
is effectively discarding draws. This tuning option is critical since this algorithm generates autocorrelated
parameters by design, although it may not necessary to thin in some cases ([4]).

The user controls the thinning rate by the argument mcsave N. If N = 1, as in figure|l] every single draw
is saved (none are thinned out). As we saw with that example, the autocorrelation is high, suggesting the
need to thin more (save fewer).

We now rerun the chain with mcsave 100 (figure , by increasing the total samples by 100 and saving
every 100", This helps reduce the autocorrelation and produces independent draws from the posterior of
interest.

5.4.2 Optimize the acceptance rate

Studies have shown that there is an optimal range for acceptance rate for the Metropolis-Hastings algorithm
(e.g. [B]). If the proposal distribution generates values too close to the current state, the chain will accept
them (high acceptance rate) but explore the posterior slowly and need more thinning. Alternatively, if
proposals are too far away into regions of low density (low acceptance rate) the chain will not explore the
space. The optimal acceptance rate varies by model size, among other things, but is roughly 40%. The
general advice is to tune the proposal distribution to achieve an efficient acceptance rate, with models with
more parameters having a lower optimal acceptance rate.
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Figure 2: The samples from a simple model with mcsave=100. Note the negligible autocorrelation of both
parameters.The red ellipses show the estimated pairwise parameter covariances, and the red point the MPD.

ADMB accomplishes this by “scaling” the covariance matrix up or down, depending on the current
acceptance rate, during the first part of the chain. Scaling the covariance matrix down produces proposed
sets closer to the current set, and vice versa for scaling up. By default, it scales during the first 500 iterations
(and prints this to screen), but the user can specify this with mcscale N or turn off scaling with mcnoscale.
ADMB rescales the covariance matrix every 200 iterations until the acceptance rate is between 0.15 and 0.4,
or the scaling period is exceeded.

In practice, the defaults work for many models, but the user may want to extend the scaling period for
some models. Draws from this tuning phase should be discarded as part of the burn-in.

5.4.3 mcprobe

For some models, there may be concern of being “stuck” in a local minimum and simply never proposing
a value far enough away to escape it and find other regions of high density. Obviously this problem would
present issues for maximum likelihood inference as well. ADMB has a built-in algorithm which modifies
the default proposal distribution so it occasionally proposes very distant parameters (i.e. “probes”)ﬂ The
mcprobe X argument initiates this option.

The modified proposal distribution is a mixture distribution of normal and Cauchy distributions. The
argument X controls how the two distributions are mixed, with larger values being more Cauchy (fatter tails,
larger jumps). The range of valid inputs is 0.00001 to 0.499, and if no value is supplied a default of 0.05 is
use

Figure[3|shows the shape of the proposal distribution. Note the extremely fat tails, and that the standard
proposal itself is bounded.

5Previous versions of ADMB called this mcgrope — this is now deprecated
6See the function for more on how the distribution is created
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Figure 3: Example of fat-tailed proposal values for a parameter for the mcprobe option compared to the
default proposal.

5.4.4 mcrb

The -mcrb N option (which stands for “rescaled bounded”) alters the covariance matrix used to propose new
parameter sets in the Metropolis-Hastings algorithm. Its intended use is to create a more efficient MCMC
sampler so the analyses run faster. This option reduces the estimated correlation between parameters. The
value of N must be integer and between 1 and 9, inclusive, with lower values leading to a bigger reduction
in correlation.

The option will be most effective under circumstances where the correlation between parameters at the
posterior mode is higher than other regions of the parameter space. In this case, the algorithm may make
efficient proposals near the posterior mode, but inefficient proposals in other parts of the parameter space.
By reducing the correlation using mcrb the proposal function may be more efficient on average across the
entire parameter space and require less thinning (and hence run faster).

The mcrb option is a set of calculations performed on the original correlation matrix, as follows.

1 pia
Yo =| : The original correlation matrix
| Pr 1 1
[ 1 0
L= : : Lower Choleski decomposition of ¥4
| L1 Lyn
1 0
L= Raise elements to power user supplied N
I 71:(/110 Lﬁ%m
1 0
L= A A Normalize rows of L
Lna . Lun
Lo, | |Ln..|

By working with the Cholesky decomposition of the correlation matrix, the algorithm ensures that the
rescaled bounded matrix used in the MCMC remains a valid correlation matrix. The impacts on a correlation
matrix can be difficult to anticipate, but fortunately ADMB writes the resulting covariance matrix to the
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file corrtest (a text file with no ending) under the label modified S. The user can plot this against the
estimated covariance to visually gauge the impact of the mcrb algorithm.

Original Correlation=-0.999 Original Correlation=-0.9 Original Correlation=-0.7
= Original === mcrb 1 mcerb 9 = Original == mcrb 1 mcrb 9 = Original === mcrb 1 mcrb 9
o~
ko)
5}
£
E Original Correlation=-0.5 Original Correlation=-0.01 Original Correlation=0
o

~— Original == mcrb 1 merb 9 =~ Original == mcrb 1 merb 9 ~— Original === mcrb 1 mcrb 9

e /\

S

Parameter 1

Figure 4: The effect of mcrb on a variety of correlations between two hypothetical parameters. Note that
the effect of setting NV = 9 depends on the original correlation.

If poor performance is suspected to be caused by correlations that are too high, the mcrb option provides
a quick, convenient to try a reduced correlation matrix in the algorithm.

5.4.5 User-specified covariance matrix

The mcrb option is a quick way to try lowering the correlation between some parameters. A more flexible
(and transparent) option is to provide ADMB with a covariance matrix specified by the user. By examining
preliminary chains or using information gained from other simple models, it may be possible for the user to
define a covariance matrix that is more efficient than the estimated one, or modified via the built-in options.
We demonstrate the improved performance using this option in the next section.

Providing user-supplied covariance is a more advanced technique that is not built in to ADMB. It requires
a more detailed understanding of the underlying output file structure of ADMB. The steps to do this can
be found in a [separate document| on the ADMB website. The key is that the admodel.cov file is in the
unbounded space and thus the user specified covariance matrix must be converted using the following function
or something similar:

write.admb.cov <- function(cov.user, model.path = getwd()) {

temp <- file.exists(pasteO(model.path, "/admodel.cov"))

if (!'temp)
stop(paste0("Couldn't find file ", model.path, "/admodel.cov"))

temp <- file.copy(from = pasteO(model.path, "/admodel.cov"), to = pasteO(model.path,
"/admodel_original.cov"))

wd.old <- getwd()

on.exit(setwd(wd.old))

setwd (model.path)

results <- get.admb.cov()
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scale <- results$scale
num.pars <- results$num.pars
if (NROW(cov.user) != num.pars)
stop(paste0("Invalid size of covariance matrix, should be: ", num.pars,
"instead of ", NROW(cov.user)))
cov.unbounded <- cov.user/(scale %o0% scale)

file.new <- file(pasteO(model.path, "/admodel.cov"), "wb")
on.exit(close(file.new))

writeBin(as.integer (num.pars), con = file.new)
writeBin(as.vector(as.numeric(cov.unbounded)), con = file.new)
writeBin(as.integer(results$hybrid_bounded_flag), con = file.new)
writeBin(as.vector(scale), con = file.new)

We note that the user is responsible for checking whether the covariance matrix passed is valid. In R
this can be done with the matrixcalc package:

matrixcalc::is.positive.definite(x, tol = 1e-08)

If the covariance matrix is not valid, ADMB will throw an error and perhaps proceed but the output
from the MCMC would likely be unusable.

6 Hybrid MCMC

The “hybrid” option in ADMB is an implementation of an MCMC algorithm based on Hamiltonian dynamics.
Here we provide a simplified overview |Z| of the algorithm, with the aim of providing users an intuition about
its behavior and properties and how to use it within ADMB. This section is based on [6], which provides
a thorough review of the algorithm, including background motivation, proof of ergodicity, and illustrative
exampled]

The hybrid method is different from the Metropolis-Hastings algorithm in how it proposes new parameter
values. Instead of proposing random states based on the current value, the hybrid method uses derivatives
to follow a contour of the posterior surface. By doing so, it (in theory) only proposes states that are very
likely to be accepted, and as such will have less autocorrelation.

In some models, a well tuned hybrid chain will need less thinning, if any at all, and run faster. The
downside of the algorithm is that it is more difficult to tune than the Metropolis-Hastings algorithm.

6.1 Algorithm

The algorithm utilizes the properties of a physical system known as Hamiltonian dynamics. Hamiltonian
dynamics, while based in physics, provides some extremely useful mathematical properties for Bayesian
integration via MCMC.

A Hamiltonian system consists of two parameter vectors of equal length: “position” (q) and “momentum”
(p). How these parameters change over time is described by the Hamiltonian function, H(q, p). This system
can be conceptualized as a frictionless surface about which an object moves. At some time ¢ an object has
a certain height (position) and momentum. The height of the surface is equal to the objective function of
our model, and the momentum variables are introduced parameters to ensure the Hamiltonian dynamics
are met. Samples from a posterior are generated by simulating the object moving about the joint surface
through time, governed by H.

For use with MCMC, H is assumed to be H(q,p) = U(q) + K(p), where U is analogous to the potential
energy and K kinetic energy. U is set equal to the ADMB objective function (i.e. the negative log of the

TIgnoring, for example, the transformation of the parameter space via the Choleski decomposition used by ADMB
8This chapter is available at http://www.admb-project.org/developers/workshop/la-jolla-2010/ham-mcmc.pdf/view
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posterior density) and K to a diagonal multivariate normal distribution. The hybrid MCMC algorithm
samples from the joint posterior, H, but we are only interested in the posterior for U, so K is not saved by
ADMB.

The time trajectory of the object through the joint probability space, H, is used to generate proposed
parameter sets. Given the form for H above, the fundamental equations of motion are:

Pk U 2
dt api ( )
dt N 8qi (3)

ADMB uses the “leapfrog” method to discretize equations . The leapfrog method is more reliable
than the well-known Euler method. It has two tuning parameters: the number of steps to take (hynstep),
and the step size ¢ (hyeps). The following sequence of calculations shows a single iteration of the leapfrog
method, for the i*" variable, and is repeated hynstep times sequentially.

pilt +£/2) = pilt) — (s/z%q(t)

(3

a(t+e) = ai(t) + sw
pi(t+e) =pi(t+e/2) — (¢/2) qu@ +e)

The leapfrog algorithm moves deterministically through the joint surface along a contour of (approxi-
mately) constant H. That is, for a given starting value of (go, po) and tuning parameters the trajectory will
always end in the same place. Examples of trajectories under different tuning parameters for the leapfrog
method are given in ﬁgure Note that ADMB calculates the partial derivatives g—g at each function
evaluation using automatic differentiation. Thus these are available for any model and do not have to be
determined analytically, which can be difficult or impossible for large, non-linear models.

Casting a posterior into a Hamiltonian system and discretizing it with the leapfrog method is simply a
way to generate proposed sets of parameters in the larger, stochastic MCMC algorithm. A single iteration
of the hybrid MCMC algorithm, as implemented in ADMB, has three steps:

1. Propose new momentum variables. New momentum values, p*, are generated from a normal dis-
tribution based on the estimated covariance matrix, and independent of the current position variables.

2. Propose new position variables. Given the current state of the system, (q,p*), new position
variables ¢* are generated with the leapfrog algorithm using hynstep |E| steps and a step size of hyeps.

3. Accept or reject the new state. The new state is then updated with a Metropolis step (i.e. accepted
or rejected) in the same way as above. Acceptance is expected to be high because the proposed values
(¢*,p*) are rarely into regions of low density for a well tuned chain.

We can see the first two steps of the algorithm by randomly drawing values for U and doing a leapfrog
projection to the proposed parameters (Fig. @

A perhaps intuitive question might be: why bother with the momentum variables at all? One issue is
that without the momentum variables, and the Hamiltonian dynamics in general, we would need to account
for changes in volume in the acceptance probability (step 3 above)[6]. This would require computing the
determinant of the Jacobian matrix of the mapping defined by the dynamics. This Jacobian is not readily
available and is often computationally intensive. Thus the need to adopt the Hamilton dynamics framework.
Hamiltonian dynamics also provides other properties required for an ergodic Markov chain [6].

The hybrid MCMC thus samples from the joint posterior of the position and momentum vectors, but
ADMB discards the momentum variables and returns only the position variables. The user can then do
inference on those samples in the same was as the Metropolis-Hastings method, given they come from a
properly converged (stationary) chain.

9 Actually a random integer is generated around this value
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Figure 5: Leapfrog trajectories for different sets of tuning parameters. The posterior surface is shown as
contours, and the posterior mode as a red point. The filled black point is the starting point, and the
arrows show the trajectory of the leapfrog steps, ending at the open circle representing the proposed set of
parameters.

6.2 Arguments

Arguments for the hybrid algorithm are in general similar to those above, so we only discuss the differences.
The main arguments are:

-mcmc N Run N MCMC iterations

-hybrid Use the hybrid method

-hynstep N Mean number of steps for the leapfrog method

-hyeps X The stepsize for the leapfrog method [X numeric and > 0]

Table 3: ADMB runtime arguments for the hybrid MCMC

Since the estimated covariance matrix is used in the algorithm, the mcdiag, mcrb N, and mcmult options
above are also available. The mcprobe argument is not currently supported for the hybrid algorithm.

Note that mcsave N is not an argument for the hybrid algorithm and will be ignored. Each MCMC
iteration of the hybrid algorithm is saved, such that any thinning must be done manually by
the user after running.

6.3 Tuning the hybrid algorithm

A tuned hybrid MCMC algorithm often provides a more efficient (computationally) chain than the random
walk behavior of the Metropolis-Hastings algorithm. However, the hybrid algorithm is often much more
difficult to tune. A thorough review of tuning techniques is beyond the scope of this guide, and we refer
users to [6] for further reading of more advanced tuning techniques and intuition about reasonable Valueﬂ

10The ADMB algorithm works in the transformed space, via the Cholesky decomposition of the estimated covariance matrix,
making intuition about tuning even more difficult
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Figure 6: Leapfrog projections for different random draws from U.

In most practical applications the hybrid method is tuned via trial and error. That is, values for hynstep
and hyeps are tried on a short chain, and the output diagnosed. ADMB uses default values of 10 and 0.1,
respectively, and these may be good starting values for most problems. The end goal is to find a set of
tuning parameters that produces a well mixing chain with the fewest leapfrog steps. Figure [7] shows the
autocorrelation of a parameter from the simple model across different tuning parameters. Note that the top
right and bottom left panels show very similar ACF patterns, which should not be a surprise when compared
to the corresponding leapfrog trajectories in Further, from that figure we can see that a chain with a
hynstep of 100 cycles the surface many times, and although it mixes well, this value could probably be
lowered and the runtime reduced without affecting mixing. This is somewhat analagous to having a higher
thinning rate than is necessary.

A word of caution regarding the tuning of hybrid chains. For most values of hyeps the leapfrog trajectories
will be “stable” in that they will cycle around a contour of H (this can be seen in the last panel in figure [5).
However, for values of hyeps that are too large, the method becomes unstable and trajectories diverge (H is
no longer constant), causing the algorithm to propose parameters with low density which are then rejected.
Unfortunately for real problems, the value of hyeps that is “too big” can vary across the posterior space.
Another issue that can arise is that certain combinations of tuning parameters can lead to near periodicity.
That is, the leapfrog trajectory ends very near to where it began, after one or more steps. In pathological
cases it could cycle forever and never be able to sample regions of the posterior space (i.e. not be ergodic).
In practice near periodicity will make for a very slow mixing chain. ADMB mitigates this possibility by
randomly drawing the number of leapfrog steps at each MCMC iteration. However, the user should still be
aware of these potential issues and be vigilant in diagnosing the mixing behavior of a hybrid chain. Samples
from an MCMC chain that is not in equilibrium, or has other issues, can lead to incorrect inference.

7 An example with non-linear posterior
The simple example used above had the characteristic that the parameters were correlated, but this correla-

tion was constant across the entire posterior. Thus the same proposal distribution worked well throughout
the parameter space.
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Figure 7: The autocorrelation of the parameter a from the simple model across different tuning parameters
of the hybrid method.

Here we look at another example with two parameters, but where the correlation changes. This example
uses contrived data and a discrete theta-logistic model. This is a classic example of a simple model which
can lead to convergence issues for MCMC chains.

We first run it with the default settings and a thinning rate of mcsave 100.
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Figure 8: The logistic model with 1 in 100 samples saved using the Metropolis-Hastings algorithm and
estimated covariance matrix (red ellipse).

We can immediately see the autocorrelation remains high even after thinning. One option would be to
increase the thinning rate. Another is to try a lower correlation. From this initial run we calculate the
empirical covariance matrix and rerun the chain with this option (see [5.4.5)).
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Figure 9: The logistic model with 1 in 100 samples saved using the Metropolis-Hastings algorithm and
empirical covariance matrix (blue ellipse). Note the improvement in acf compared to
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Here we see a substantial improvement in the chain performance by changing the proposal distribution
of the Metropolis-Hastings algorithm. This option is far superior to increasing the thinning rate because it
takes no more time to run.

We can also try the hybrid algorithm on this model, starting with the default parameters of hyeps and
hynstep of 0.1 and 10, and using the estimated covariance matrix.

1.0

-0.9

0 0
i
'
[
'
[
|
—
—
|
T
'
T -
'
T
'
T
'
[
—
'
|
L

8000
-1.0

6000
I

4000
I

'

T

'

[
I

|
L
—
N

|
—u
—
I

'
—|
F—
IR

'

T
F—
IS

'

T
F—
P

'

T
—
P

'

[
L
H—

2000

-0.05 0.00 0.05 0.10 0.15

Figure 10: The logistic model using the hybrid method with default tuning parameters and the estimated
covariance matrix (red ellipse).

The autocorrelation is high, suggesting we need to tune the chain. First we try the same as above, and
instead use the empirical covariance matrix.
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Figure 11: The logistic model using the hybrid method with default tuning parameters and the empirical
covariance matrix (blue ellipse).

This chain is performing better, but is still autocorrelated. A little trial and error the combination of
hyeps 0.05 and hynstep 100 performed significantly better, and similarly to the tuned Metropolis-Hastings
chain in
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Figure 12: The logistic model using the hybrid method and hyeps 0.05 and hynstep 100 for tuning pa-
rameters and the empirical covariance matrix (blue ellipse).
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Here the hybrid and Metropolis-Hastings perform similarly with the same number of function evaluations
per sample (hynstep and mcsave, respectively). With a little trial and error, and visual exploration of the
posterior surface it was fairly straightforward to improve on the default performance. It is likely possible to
further refine the hybrid algorithm to outperform the Metropolis-Hastings, but it is not clear which of the
parameters to start with. The difficulty in tuning illustrates a common issue with the hybrid method.

For many problems, the default Metropolis-Hastings algorithm will work well and require no tuning
beyond a modest thinning rate. We encourage users to start with this algorithm, and explore alternatives
only if computational efficiency is restrictive for the needs at hand. The hybrid method is more sophisticated,
but much more difficult to tune, and we recommend it as an option only when the Metropolis-Hastings is
struggling.
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