
Page 3 Volume 1, Issue 4

If you’re not familiar with C++ code, you might find the above code a bit challenging at first. The above two functions
return a single differentiable variables (dvariable dnorm(...)), require three arguments (x,mu,std) where the
first argument is defined as a data-type variable/vector and the second and third arguments are differentiable vari-
ables (dvariable or dvar_vector). All three of these arguments are given “read-only” access to the variables via
pointers (e.g., const double& x) which is faster than creating copy of the object (e.g., double x) for the argu-
ment list. The second function also declares two differentiable vectors on the fly (e.g., dvar_vector); the scope of
these two vectors is only within the dnorm function. You can also write your own function within the ADMB template
file, and copy the corresponding C++ code from the cpp file that is produced by tpl2cpp.exe and remove the class
member name (model_parameters::) from the function. — Continued on page 4 —

Often I find that I’m repeatedly writing the same code in my ADMB template files for various projects; for example,
the negative log-likelihood for the normal distribution. Wouldn’t it be nice to just call a function such as dnorm
(x,mu,sd) and have it return the negative log density. Many such functions have already been implemented in the
ADMB library (e.g., posfun). The purpose of this article is to show you how to develop your own personal libraries
that contain your own custom functions. Building custom libraries is a great way to organize your code, make the
code more readable, and reduce the probability of making a coding error in future projects. Custom functions from
these libraries can be included in your ADMB project using #include <library_name> statement in the
GLOBALS_SECTION of your ADMB template. When you compile the ADMB project the functions written in the li-
brary are included in the project. There are two options for creating your own custom libraries for use in ADMB: 1) is
to create a static-library application which involves the creation of a header and cpp files and compiling these into a
binary library, or 2) create a new cpp file with various functions to include into your ADMB project. The second option
is by far the simplest option as it does not require any header files and compiling static-libraries. The remainder of
this article will focus on the much simpler second option.

To create your own custom library all you need to do is create a new file (e.g., “mylib.cpp” and be sure that this file is
saved in the project root folder or the ADMB/lib folder), and at the top of that file be sure to include the admodel
header file (#inlcude <admodel.h>). Following the include statements, write your own custom functions that re-
turn or modify variables. For example, I have a stats.cxx file saved in my ADMB Lib directory where I have com-
piled over the years many statistical functions (many of which are adopted from R) to carry out routine negative log-
likelihood calculations for various statistical distributions. An example of the stats.cxx file containing two func-
tions for computing the negative logdensity for a normal distribution is shown in the following code. Notice that you
may overload functions, by declaring more than one function using the same name in the same scope. The declara-
tions of the functions must differ from each other either the number of arguments and/or the type of arguments.
When you call an overloaded function, the correct function is selected by comparing the argument list with the vari-
able list.

Creating Custom Libraries for use in ADMB
By Steve Martell

#include <admodel.h>

dvariable dnorm(const double& x, const dvariable& mu, const dvariable& std)

{

 double pi=3.14159265358979323844;

 return(0.5*log(2.*pi)+log(std)+0.5*square(x-mu)/(std*std));

}

dvariable dnorm(const dvector& x, const dvar_vector& mu, const dvar_vector& std)

{

 double pi=3.14159265358979323844;

 int n=size_count(x);

 dvar_vector var=square(std);

 dvar_vector SS=square(x-mu);

 return(0.5*n*log(2.*pi)+sum(log(std))+0.5*sum(elem_div(SS,var)));

}

Page 4 Volume 1, Issue 4

where x is a data vector, mu and std are differentiable vectors.
The following is a simple example of fitting a von Bertalanffy growth model to some length-age
data that uses the custom library stats.cxx and calls the dnorm function.

Note also you may need to add the RETURN_ARRAYS_INCREMENT() and RETURN_ARRAYS_DECREMENT() state-
ments if your function returns a variable object (see 3-7 in the Autodiff manual for more information). To use this func-
tion within my ADMB project I first must include the file in the GLOBALS_SECTION then call the dnorm function in the
PROCEDURE_SECTION, e.g.,

Creating Custom Libraries for use in ADMB continued from page 3

GLOBALS_SECTION

 #include <stats.cxx> //include functions from my custom library

PROCEDURE_SECTION

 dvar_vector plen = linf*(1.-exp(-k*(age-to)));

 dvar_vector stdev = cv*plen;

 f = dnorm(len,plen,stdev); //neg loglike for normal density.

DATA_SECTION

 init_int nobs;

 init_vector age(1,nobs);

 init_vector len(1,nobs);

PARAMETER_SECTION

 init_number linf;

 init_number k;

 init_number to;

 init_number cv;

 !! linf = 100.;

 !! k = 0.2;

 !! to = -0.5;

 !! cv= 0.1;

 objective_function_value f;

PROCEDURE_SECTION

 dvar_vector plen = linf*(1.-exp(-k*(age-to)));

 dvar_vector stdev = cv*plen;

 f = dnorm(len,plen,stdev); //neg loglike for normal density.

GLOBALS_SECTION

 #include <stats.cxx> //custom library that contains the dnorm function

————————————— Example data ———————————————————————

nobs

20

age

1 2 2 3 3 3 3 3 4 6 5 5 7 4 4 6 7 7 7 9

length

27 41 43 49 51 53 55 57 57 59 65 67 69 71 71 73 75 83 85 101

