
The ADMB pthread_manager Class
svn+ssh://admb-project.org/branches/threaded2

http://www.admb-project.org/svn/branches/threaded2/

The ADMB pthread_manager class was introduced in the June 2013 ADMB Developer Workshop
in Seattle. At that time, the performance benefits of using the pthreads were unclear. The following
examples, show that multi-threading can substantially decrease convergence time in some models.
Two of the examples are based on the examples in the original ADMB manual. A third example
demonstrates passing data among “slave” threads. The final example demonstrates application of the
pthread_manager class to the tagest diffusion model, and adamply of inserting the class in some terrible
old legacy code.

All examples were tested on two different architectures: Xeon x5690 @3.47GHz x 12; 11.7GiB RAM
and Core i7-3630QM CPU @ 2.40GHz × 8; 15.6 GiB RAM

If anyone is interested they could do some more testing after checking out the threaded2 branch from the
subversion repository (svn+ssh://admb-project.org/branches/threaded2, for now).

The “multisimple” example revisited
The folder examples/threaded/multisimple contains two revised .tpl files, both derived
from the classic admb simple.tpl example. msimple.tpl is linear regression on a largish (prime)
number of data points (1000003) chopped into segments so that sums of squares contribution for each
segment are computed on separate threads independently of other segments. The sums of squares from
each thread are summed to compute the likelihood. msimple-nothreads.tpl performs the same
regression without any threading. The purposes of this example are to illustrate how one might go about
adapting a model for multithreading and to examine the scaling properties of the pthread_manager class.
The revisions to the msimple.tpl since the Seattle meeting were provoked by reading an interesting
piece in Dr. Dobbs, but actually have little to do with “false sharing”.

1

http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.admb-project.org/svn/branches/threaded2/
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206

Timing
Here are estimates of time to convergence of msimple running on a Core i7 laptop. Seconds refers to the
“Real” time returned from the linux time utility.

Threads Seconds Final F max|G| Fn Evals

1 6.88 8.8535e+06 -5.0337e-05 24

2 3.56 8.8535e+06 -5.0337e-05 24

3 2.51 8.8535e+06 -5.0353e-05 24

4 1.97 8.8535e+06 -5.0337e-05 24

5 2.37 8.8535e+06 -5.0352e-05 24

6 2.14 8.8535e+06 -5.0352e-05 24

7 1.94 8.8535e+06 -5.0337e-05 24

8 1.80 8.8535e+06 -5.0338e-05 24

9 1.99 8.8535e+06 -5.0335e-05 24

10 1.92 8.8535e+06 -5.0337e-05 24

11 1.90 8.8535e+06 -5.0337e-05 24

12 1.89 8.8535e+06 -5.0335e-05 24

50 1.82 8.8535e+06 -5.0337e-05 24

Performance Scaling
The following graphs show the speedup running on different numbers of threads relative to running
on a one thread on two different architectures. The speedup relative to using a single thread is roughly
proportional to the number of threads. The dotted line shows theoretical linear scaling. Scaling is almost
linear when the number of threads does not exceed the number of CPUs available.

2

Speedup is roughly proportional to the number of threads up to the point where the number of threads
exceeds the number of processors. After that point the speedup is more or less constant. It is puzzling why
the initial speed up is not strictly linear. It could be due to the thread scheduling policies that Matthew
pointed out in Seattle or the perhaps overhead of pthread creation. The Corei7 architecture consists of 4
dual core processors, so it is also puzzling why the speedup stops at 4 and not 8 threads. (Is the Xeon a
dual core processor?)

The thread scheduling policy notion was explored in a cursory way. Setting the scheduling policy to
SCHED_FIFO in void adpthread_manager::create_all(void * ptr) caused the
program to hang, probably because the “slave” threads blocked the “master”. There is more to this than
meets the eye.

Over-fitting Distraction
During preliminary explorations of the scaling properties of this model, it was noticed that the time to
convergence increased for certain numbers of threads and attributed it to some inexplicable instance
of false sharing. Closer examination revealed that the numbers of function evaluations were larger in
these instances. Further the derivatives at convergence were very small, ~10-6 and the derivative checker
showed the derivatives to be wrong. The data used in the msimple model are generated by a linear
regressions with normally distributed observation errors, exactly the model being fit. This appears to be a
case of “over-fitting” whereby the minimizer attempts to make the derivative really small by doing more
function evaluations. The errors reported by derivative checker are possibly caused by roundoff in the
finite difference approximation. The convergence criterion was relaxed to 10-3 (from the default 10-4) to
obtain the above results.

3

http://www.google.com/url?q=http%3A%2F%2Fman7.org%2Flinux%2Fman-pages%2Fman3%2Fpthread_attr_setschedpolicy.3.html&sa=D&sntz=1&usg=AFQjCNEe-C2XRz4l0nlWDGaylg85F_ZMSQ
http://www.google.com/url?q=http%3A%2F%2Fman7.org%2Flinux%2Fman-pages%2Fman3%2Fpthread_attr_setschedpolicy.3.html&sa=D&sntz=1&usg=AFQjCNEe-C2XRz4l0nlWDGaylg85F_ZMSQ
http://www.google.com/url?q=http%3A%2F%2Fman7.org%2Flinux%2Fman-pages%2Fman3%2Fpthread_attr_setschedpolicy.3.html&sa=D&sntz=1&usg=AFQjCNEe-C2XRz4l0nlWDGaylg85F_ZMSQ
http://www.google.com/url?q=http%3A%2F%2Fman7.org%2Flinux%2Fman-pages%2Fman3%2Fpthread_attr_setschedpolicy.3.html&sa=D&sntz=1&usg=AFQjCNEe-C2XRz4l0nlWDGaylg85F_ZMSQ
http://www.google.com/url?q=http%3A%2F%2Fman7.org%2Flinux%2Fman-pages%2Fman3%2Fpthread_attr_setschedpolicy.3.html&sa=D&sntz=1&usg=AFQjCNEe-C2XRz4l0nlWDGaylg85F_ZMSQ
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206

Funnels and threads - the forest example
Chapter 3 of the ADMB manual introduces the notion of a “funnel” to reduce the size of the temporary
storage buffers. The computations in one pass through the funnel do not depend on the results of previous
passes through the funnel. Code that can be executed using a funnel is therefore a good candidate for
implementing on threads. Directory examples/threaded/mforest contains mforest.tpl
which is a multithreaded implementation of the forestry model described in Chapter 3.

The example also illustrates the use of a specialized class to encapsulate variables needed to run the
model as discussed in Seattle. Each thread creates a unique instance of this class. In the original
forest.tpl example, the functions used in the numerical integration, dvariable trapzd(...
) and dvariable adromb(...) were included in the in the function_minimzer class so
that they were be inherited by the model_data class defined by the tpl. For this example, these
functions were moved to the thread_funnel class to eliminate the possibility of false sharing of data
(particularly the static variables in trapzd) and functions. It also avoids the need to pass a pointer to
function and the necessity to work around C++ rules about taking the address of a class member.

This table below shows the time in seconds to reach convergence as reported by the “REAL” field of the
unix time command.

Architecture Unthreaded Threaded Speedup

Core i7 2.102 0.605 3.5

Xeon 2.725 0.611 4.5

The model converged to the same function value after 37 function evaluations for both the threaded and
unthreaded. Speed-up is 3 to 4 fold on both architectures tested.

newertpl
This example demonstrates passing data among “slave” threads and the use of thread groups to designate
thread numbers for data passing. This code is based on something developed to handle tag cohorts in
MFCL and resulted in a 2x speedup. Further documentation might be forthcoming (or not).

Tuna tagging diffusion model - tagest

4

Three versions of the tagest code were developed. The “Benchmark” is a slightly simplified version
of the standard (svn+ssh://katsuo/movemod/25) code. This code uses and advection-diffusion-
reaction model to predict the density of tagged fish over time on a finite difference grid. Parameters are
estimated using ADMB to minimize a Poisson log-likelihood function of observed and predicted tag
recaptures. Each monthly cohort of tagged fish (all the fish tagged and released in one month) is assumed
tb independent of all other tagged fish. Since the cohorts are independent, a funnel_dvariable
object is to compute the likelihood for each cohort.
The “Threaded” code aggregates all of the computations into a single function - including computation of
movement and mortality fields from model parameters and intermediate tridiagonal matrices for solving
the PDE. This function is implemented as member of specialized class and invoked by the task running
on the thread.

The standard model domain is a 95 x 40 finite difference grid with 1 degree spatial steps. The PDE is
solved with ¼ month time steps. Twentyeight cohorts were followed for 24 months, and there are 76
active parameters. The value of the likelihood function and the maximum gradient for the three code
versions werw the same after 100 function evaluations.

The following table shows the time in seconds to compute 100 function evaluations of the three code on
two different architectures as reported by the “REAL” field of the unix time command.

Code Version Xeon Core i7

Benchmark 585.093 502.694

Threaded (28 threads) 161.542 382.267

No-threads 1501.985 1346.751

Speedup relative to benchmark 3.6 1.3

Speedup relative to no-threads 9.3 3.5

The speedup relative to the no-threads code is deceptively impressive on the Xeon, but the no-threads
version is considerably slower than the benchmark. The speedup relative to the benchmark is the
comparison of interest and depends critically on the number of processors, 3.6 for 12 core for the Xeon
and 1.3 for for the four core Corei7

A more demanding test is to use a higher resolution model domain, a 190 x 80 finite difference grid with
1/2 degree spatial steps. At this spatial resolution, PDE should be solved with smaller time steps to avoid
numerical instability. Preliminary tests with 1/12 month time step following 28 cohorts for 24 months
caused both architectures to run out of RAM and to begin to use swap memory. The following table
shows results for 100 function evaluations with ⅙ month time steps following cohorts for 12 months (not
the most stable solution). Unfortunately this configuration eats up all the RAM on the Xeon machine.

5

Code Version Xeon Core i7

Benchmark NA 1437.069

Threaded (28 threads) NA 1200.664

No-threads NA 3969.218

Speedup relative to benchmark NA 1.2

Speedup relative to no-threads NA 3.3

More RAM is on order for the Xeon machine.

Using legacy classes
The code listing below is the function that runs on the threads in the diffusion model. It is similar
in structure to the code used in the mforest example. The primary parameter class, par_t_reg, is
successively derived from two base classes, contains AUTODIF container classes for both constant
and variable objects, contains instances of other specialized C++ classes, and even uses templates to
distinguish variable and constant objects (bad idea). These features make it a pretty good test case for
running class members on threads. C++ assumes that all classes have a default constructor (if not it
will invent one). All AUTODIF default constructors create instances of themselves, but do not allocate
memory for data. All AUTODIF assignment operators check to see if the object on the left of the operator
has allocated memory. If not, memory is allocated to exactly correspond to the object on the right of the
operator. Once memory is allocated, the data are copied to the object on the left. This action ensures a
“deep copy” of the object on the right. The pthread_manager class uses this feature to ensure that threads
do not inadvertently share data.

#include <admodel.h>
#include <adthread.h>
#include "par_t_reg.h"

void mp_computeCohortLikelihood(void* ptr)
{
 // cast the data pointer to the proper type
 new_thread_data * tptr = (new_thread_data *) ptr;

 // set up the gradient stack for the thread
 gradient_structure::set_CMPDIF_BUFFER_SIZE(150000000L);
 gradient_structure::set_GRADSTACK_BUFFER_SIZE(12550000L);
 gradient_structure::set_MAX_NVAR_OFFSET(1000);
 gradient_structure gs(20000000);

 // get the thread number
 // assumed to be equal the the cohort number
 const int sno=tptr->thread_no;

 // need to get this set first so that it knows which buffer to

6

 // use for this instance

 ad_comm::pthread_manager->set_slave_number(sno);

 // use default constructor to create instance of par_t_reg class
 // with unallocated and unitialized class members
 par_t_reg param;

 // allocate memory and values for constant class members
 // from master (thread 0) using the constant data buffer

 // and allocate memory for variable class members

 param.get_constant_data(0);

 do
 {
 ad_comm::pthread_manager->cread_lock_buffer(0);
 int lflag=ad_comm::pthread_manager->get_int(0);
 ad_comm::pthread_manager->cread_unlock_buffer(0);
 if (lflag==0)
 break;

 // get values of variable class members from the master thread
 // for this function evaluation

 param.get_variable_data(0);

 // get dates over which to compute likelihood from the constant buffer
 ad_comm::pthread_manager->cread_lock_buffer(0);
 int year = ad_comm::pthread_manager-> get_int(0);
 int month = ad_comm::pthread_manager-> get_int(0);
 year_month local_start_date(year,month);
 year = ad_comm::pthread_manager-> get_int(0);
 month = ad_comm::pthread_manager-> get_int(0);
 ad_comm::pthread_manager->cread_unlock_buffer(0);
 year_month final_date(year,month);

 // get initial tag density matrix from master using the variable buffer
 ad_comm::pthread_manager->read_lock_buffer(0);
 dvar_matrix release = ad_comm::pthread_manager->get_dvar_matrix(0);
 ad_comm::pthread_manager->read_unlock_buffer(0);

 // use par_t_reg class member to compute likelihood for this cohort
 int cohort=sno;
 dvariable like = param.computeCohortLikelihood(local_start_date,
 final_date, release,
cohort);

 // return likelihood to master
 ad_comm::pthread_manager->write_lock_buffer(0);
 ad_comm::pthread_manager->send_dvariable(like, 0);
 ad_comm::pthread_manager->write_unlock_buffer(0);

 // compute derivative contribution for this thread
 slave_gradcalc();
 }
 while(1);

7

 // terminate this thread and ths instance of par_t_reg
 pthread_exit(ptr);
}

Next Steps
Incorporation of pthreads into ADMB applications can produce useful speedup depending on the model
and the hardware on which it is run. The ADMB pthread_manager class appears to be useful but not yet a
finished product. Several features need further development, but most importantly ADMB users need to
create applications for the pthread_manager class. If such applications are not developed, it is impossible
to really understand how to fully integrate pthreads into ADMB. Some useful short-term modifications to
the pthread_manager class include:

1. Simplifying the API
2. Rationalizing the destructor
3. Implementing the -ams, -gbs , and -ams flags to apply both the the master thread and the slaves
4. Computing the Hessian in threads
5. Writing some DOX for the API
6. What would be required for a THREAD_FUNCTION tpl keyword?

8

