
Parallel in ADMB via pthread and in RcppAD
via openMP

Anders Nielsen

September 21, 2013

Background

Enabling AD Model Builder to benefit from multiple cores in modern computers
has been flagged as one of the highest priorities for the ADMB foundation. It
is important simply because ADMB will not continue to be the fastest general
purpose optimizer otherwise.

At the Seattle meeting and in the following months a great effort was made and
some examples were produced, where ADMB computations were made parallel
using the pthread technology. In order for this to be possible many internal
changes had to be made.

The automatic differentiation tool RcppAD presented by invited expert Kasper
Kristensen also supports parallel processing, but uses the openMP technology.

The following documents the experiences maed during the developers meeting.

The pthread setup in ADMB

To use pthreads in ADMB a the threaded branch of ADMB must be cheked out.
The name and location of the branch is:

svn+ssh://www.admb-project.org/branches/threaded2

On a vanilla linux system it did not work in the first go. Two things were
missing. 1) In the threaded branch the compiler from template to c++ code, the
file tpl2cpp was missing, so that was copied from an existing standard ADMB
installation. 2) Also the threaded approach requires the gcc-multilib to be
installed, so that was installed.

In addition the a Makefiles in the examples had hard coded paths to compilers,
which had to be changed.

1



The openMP setup in RcppAD

The RcppAD is available from https://github.com/kaskr/adcomp and installed
by typing make install. The package includes the tools needed to parallel runs
via openMP.

The Multisimple example

The multisimple example is also described in Fournier & Sibert (2013) is a linear
regression example with 106 simulated pairs of (x,Y ). The data are simulated
such that the slope is 2, the intercept is 4 and the standard deviation is 7. The
x-points are uniformly distributed between 0 and 100.

The pthread approach

The likelihood used in AD model builder is the so-called concentrated likelihood,
where the maximum likelihood estimate for the variance is plugged-in. The func-
tion to minimize w.r.t. α and β is:

N
2

log
(
∑(Yi −αxi −β )2)

Besides data and parameter section the template file specifying this model is
simply:

f=nobs/2.*log(norm2(Y-a*x-b));

The multi-threaded version is a bit more cumbersome. It is more than 200 lines,
and those are mainly fairly complicated calls to the pthread manager. Before the
minimization starts the relevant chunks of data has to be sent to the different
cores and received by the cores in the same order. When the minimization starts,
every iteration starts by sending the new parameter values to each core, and have
each core receive it, then the subset of the calculation is done in each core, and
finally the results are send back combined. Notice that data is only send to the
cores ones.

The part of the calculation which is done in parallel is the sum of squares SS.
The final calculation of N

2 log(SS) is done after all terms are collected.

2



The openMP approach

To use the parallel implementation in RcppAD it is necessary to use the full
likelihood, so the function to minimize w.r.t. α , β , and σ is:

N
2

log(2πσ
2)+

∑(Yi −αxi −β )2

2σ2

The model implemented in RcppAD to use only a single core is:

#include <RcppAD.hpp>

template<class Type>

Type objective_function<Type>::operator() ()

{

DATA_VECTOR(Y);

DATA_VECTOR(x);

PARAMETER(a);

PARAMETER(b);

PARAMETER(logSigma);

Type nll=0;

for(int i=0;i<x.size();i++)nll-=dnorm(Y[i],a+b*x[i],exp(logSigma),true);

return nll;

}

To make to invoke parallel processing of this code only one line need to be
changed. Instead of declaring Type nll=0; the nll must be declared of type
parallel_accumulator the changed line is:

parallel_accumulator<Type> nll(this);

To use this simple parallel constructor it is required that the negative log likeli-
hood is computed as a sum of terms. Notice that this requirement prevents us
from computing the concentrated likelihood we used in ADMB.

Timings

On a simple linux laptop with 4 cores the basic example without any parallel
preparation ran in 3.3 seconds in ADMB and 7.4 seconds in RcppAD. Notice
that ADMB is twice as fast in this case, but that is because RcppAD is not
using the concentrated likelihood. A single core RcppAD version which uses the
concentrated likelihood runs in 1.7 seconds, but cannot be improved be parallel
computations.

The run times for the parallel versions are:

3



System 1 core 2 cores 3 cores 4 cores
Pthread (ADMB) 9.4 5.4 5.9 5.2
OpenMP (RcppAD) 8.0 4.9 5.0 4.4

The Pthread parallel setup running on one core increases the run time 2.8 times,
so there is an overhead in this setup, which in this simple example is substantial.
From one to two cores the run time drops almost to half (56%), but from 2 to 4
core there is little improvement.

The OpenMP parallel setup running on one core seems to have very little over-
head, as the run time only increased by 8%. From one to two cores the run time
drops almost to half (61%), but from 2 to 4 cores there is little improvement.

●

●

●

●

Pthread

Cores

R
el

at
iv

e 
tim

e

1 2 3 4

0.
6

0.
7

0.
8

0.
9

1.
0

●

●
●

●

OpenMP

Cores

R
el

at
iv

e 
tim

e

1 2 3 4

0.
6

0.
7

0.
8

0.
9

1.
0

The two different approaches to parallel the computations scaled in almost exactly
the same way on this architecture, but the pthread had a greater overhead.

Comments

The pthread model is general and flexible, but very manual in its present form.
The overhead is a concern, as the speedup on a four core machine was not enough
to overcome initial overhead. On larger machine, or larger problems with bigger
chunks this should be less important.

The openMP is very simple, but requires a certain structure of the problem, but
negative log likelihoods which are a constructed purely by a sum of terms are very
common and include most random effects models where speedup is often needed.

4



References

Fournier, D. & Sibert, J. (2013). The ADMB pthread manager Class. Available
at: http://www.admb-project.org/developers/parallel/threaded2.pdf

5


