-mceval throught the saved mcmc values from a previous mc-
save

Functions

ADMB contains a very large number of functions. “Pseudo-
prototypes” of some commonly used functions showing the gen-
eral argument types and return types. ADMB has multiple
overloads of many functions with different combinations of ar-
gument types.

number gammln(number) ;
vector gammln(vector);
number square (number) ;
number cube (number) ;

A more complete, but only partially documented,
list of functions can be found in rhe “Modules” tab
of the draft API documentation at |http://admb-
project.org/documentation/api/doxygen

Matrix and vector operations

The syntax of ADMB Matrix and vector operations follows
normal mathematical conventions as much as possible. If u
and v are vectors and M is a matrix, uxM is a normal matrix
multiplication and u*v is a dot product. Element-wise multi-
plications and divisions are accomplished by elem_prod(u, v)
and elem_div(u, v) respectively. Both functions return a vec-
tor. inv(M) returns the inverse of a matrix. trans(M) returns
the transpose of a matrix. det(M) returns the determinant of
a matrix. norm(...) returns the norm of a vector or matrix.
norm2(. ..) returns the square of the norm of a vector or ma-
trix.

Gratuitous Advice

e Beware of editors intended for word processing (e.g. Word-
Pad) that may insert extra invisible formatting characters
in files.

e Adopt a consistent programming style. Here are a couple
of reasonable sets of guidlines:
http://corelinux.sourceforge.net/cppstnd/cppstnd.
php and http://google-styleguide.googlecode.com/
svn/trunk/cppguide.xmll

e Avoid directories (folders) and file names that contain
spaces. They will only cause grief and tears. Some op-
erating systems do not distinguish between upper-case and
lower-case letters, so it’s best not to mix.

September 25, 2009 ©2009 ADMB Foundation

<377 ADMB

-

Handy-dandy Reference Card

John Sibert Anders Nielsen

September 25, 2009

ADMB Syntax Notes

_SECTIONS must begin in the first position of a line.

e Other ADMB statements and variable declarations must
begin in the third position of the line or beyond.

e LOCAL_CALCS and END_CALCS must begin in the second po-
sition.

e Semicolons are not required after statements in either the
DATA_SECTION or the PARAMETER_SECTION, but should be
used elsewhere. Since semicolons are required by C++, it
is harmless to use them everywhere.

e !'! preceding a statement indicates a line of C++ code that
will be passed unchanged to the C4++ compiler; a semicolon
must end the line.

e Template file errors are indicated by the line number in the
template file and the first letter of the offending text.

Example Template File (linear regression)

DATA_SECTION
init_int N
init_vector x(1,N)
init_vector Y(1,N)

PARAMETER_SECTION
init_number a
init_number b
init_number logSigma
sdreport_number ss
objective_function_value nll

http://admb-project.org/documentation/api/doxygen
http://admb-project.org/documentation/api/doxygen
http://corelinux.sourceforge.net/cppstnd/cppstnd.php
http://corelinux.sourceforge.net/cppstnd/cppstnd.php
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

PROCEDURE_SECTION
ss=exp(2.0xlogSigma) ;

nl1=0.5*(N*log(2.0*M_PI*ss)+sum(square(Y-(a+b*x)))/ss)j

Compile: makeadm <programname> creates a executable
Run: <programname> runs the executable

Template File SECTIONs

Sections are discussed in detail in the ADMB manual. Every
ADMB program must contain these three sections.

DATA_SECTION Describes data and specifies how they are read
and possible transformed.

PARAMETER_SECTION Describes model parameters, valid ranges
and sequence of estimation. The variable holding the value
of the objective function is specified here.

PROCEDURE_SECTION Contains the details of the model and the
likelihood computation. Semi-colons are required at the end
of each statement. Must include a declaration of one instance
of a variable of type objective_function_value.

Other sections have specialized purposes.

FUNCTION Begins definition of a function or “method” in the
PROCEDURE_SECTION LOCAL_CALCS and END_CALCS bracket
C++ code transmitted without modification to the compiler.
Semi-colons are required at the end of each statement.

INITIALIZATION_SECTION Used to initialize parameters de-
clared in the PARAMETER_SECTION.

REPORT_SECTION Used to create a customized report. Uses the
pre-defined ofstream variable report for output. For exam-
plereport << "a = " << a << endl; would place the value
of the variable a in the file <programname>.rep.

RUNTIME_SECTION Used to control the behavior of the function
minimizer. Useful to change stopping criteria during initial
phases of an estimation.

PRELIMINARY_CALCULATIONS_SECTION or
PRELIMINARY_CALCS_SECTION Intended to do prelimi-
nary calculations on the data prior to starting the model.
Largely supplanted by LOCAL_CALCS and END_CALCS code
fragments.

BETWEEN_PHASES_SECTION Code executed between estimation
phases.

GLOBALS_SECTION Used to insert any valid C++ statements
prior to the defination of the main() function. Useful to
include header files and to declare global objects.

September 25, 2009 ©2009 ADMB Foundation

TOP_OF_MAIN_SECTION Used to set AUTODIF global variables.
Useful to reduce size of temporary gradient files.

FINAL_SECTION
SLAVE_SECTION

ADMB Variable Types

ADMB uses two fundamental data types: the standard C+-+
double for which no derivative information is generated, and
the AUTODIF library dvariable for which derivative infor-
mation is generated. See the AUTODIF manual for details.
The prefix init_ in the DATA_SECTION tells ADMB to read the
value of the variable from the file <programname>.dat. The
prefix init_ in the PARAMETER_SECTION tells ADMB to esti-
mate the value of the parameter using the model. Qualifiers in
brackets [...] are optional. Refer to the ADMB manual for a
complete descriptions.

Declaration in tpl DATA_SECTION PARAMETER_SECTION

[init_Jint int int

[init_] [bounded_]number double dvariable

[init_] [bounded_] [dev_]vector dvector dvar_vector

[init_] [bounded_]matrix dmatrix dvar_matrix
[init_]3darray 3D double array 3D dvariable array
4darray 4D double array 4D dvariable array
Sdarray 5D double array 5D dvariable array
6darray 6D double array 6D dvariable array
Tdarray 7D double array 7D dvariable array
sdreport_number na dvariable
likeprof_number na dvariable
sdreport_vector na dvar_vector
sdreport_matrix na dvar_matrix
objective_function_value na dvariable

ADMB Utilities

ADMB_HOME environment variable is the folder in which ADMB
was installed. Used by other utilities, compilers and make files
to access ADMB. The folder $ADMB_HOME\bin contains executa-
bles files that can be used to build ADMB applications:

admb Very handy tool for building ADMB applications. Takes
-s -r and -d command line options. Type admb --help for more
information.

adcomp and adlink Used by admb for compiling and linking.

makeadm and makeadms build executable files from .tpl files.
The terminal letter ‘s’ invokes the “safe” library for subscript
checking.

tpl2cpp and tpl2rem translate .tpl to C++ code.

mygcco mygccs mygccopt mygcco-re comple ADMB c++ code
into object files.

linkadm and linkadms link ADMB object files into executables.

September 25, 2009 ©2009 ADMB Foundation

ADMB Files

Every ADMB application requires a template file and a data
file.

<programname>.tpl ADMB template file specifying a complete
model.

<programname>.dat The default ADMB data file. ADMB ap-
plication.

<programname>.htp and <programname>.cpp C++ header and
source code files produced by tpl2cpp.

<programname>.par Estimated values of parameters.

<programname>.std Estimated values of parameters and the
standard deviations of the parameter estimates computed by
the the inverse Hessian method.

<programname>.cor Correlation matrix of the estimated pa-
rameters.

<programname>.pin File containing the initial values of the
paramters to be used to start the numerical estimation. Format
is the same as <programname>.par

Run-time Interventions

Pressing Control-C (press the control key and then C)
after the minimizer has started will interrupt the
program and cause it to display the prompt,
“press q to quit or c to invoke derivative checker:”.
Pressing ‘q’ and then “Return” (or “Enter”), will cause the
program to leave the minimizer and enter the report phase.
Pressing ‘c’ and then “Return” will invoke the derivative
checker and additional prompts will be displayed.

Command-line Options

A large number of command line options are available
for ADMB applications. For a complete list, type
<programname> -7. A few commonly used options are given
below:

-est do the parameter estimation only (skip Hessian and S. D.
computations)

-dd N derivatives after n function evaluations
-1prof profile likelihood calculations
-mcmc [N] chain monte carlo with N simulations

-mcseed N for random number generator for markov chain
monte carlo

-mcsave N the parameters for every N’th simulation

September 25, 2009 ©2009 ADMB Foundation

