# Separable covariance function

Poisson GLMM on large spatial grid

It has for a long time been possible to fit GLMMs (Generalized Linear Mixed Models) in ADMB-RE. A typical example is correlated count data with Poisson distribution. However, when the observation are located on a spatial grid the number of latent variables (random effects in the ADMB-RE terminology) grows quadratically in the number of grid points in each geographical direction. The large number of random effects causes a computational challenge.