## Revision 594 trunk/contrib/ecolib/logisticK.cpp

logisticK.cpp (revision 594)
10 10
\param r growth rate; differentiable scalar

11 11
\param n0 initial population size at t=0; differentiable scalar

12 12
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

13
\ingroup ECOL

13 14
**/

14 15
dvariable logisticK( const double& t,  const prevariable& K,  const prevariable& r,  const prevariable& n0)

15 16
{

......
26 27
\param r growth rate; differentiable scalar

27 28
\param n0 initial population size at t=0; differentiable scalar

28 29
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

30
\ingroup ECOL

29 31
**/

30 32
dvar_vector logisticK( const dvector& t,  const prevariable& K,  const prevariable& r,  const prevariable& n0)

31 33
{

......
42 44
\param r growth rate; differentiable scalar

43 45
\param n0 initial population size at t=0; differentiable scalar

44 46
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

47
\ingroup ECOL

45 48
**/

46 49
dvar_vector logisticK( const dvector& t,  const dvar_vector& K,  const prevariable& r,  const prevariable& n0)

47 50
{

......
59 62
\param r growth rate; differentiable vector

60 63
\param n0 initial population size at t=0; differentiable scalar

61 64
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

65
\ingroup ECOL

62 66
**/

63 67
dvar_vector logisticK( const dvector& t,  const prevariable& K,  const dvar_vector& r,  const prevariable& n0)

64 68
{

......
75 79
\param r growth rate; differentiable vector

76 80
\param n0 initial population size at t=0; differentiable scalar

77 81
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

82
\ingroup ECOL

78 83
**/

79 84
dvar_vector logisticK( const dvector& t,  const dvar_vector& K,  const dvar_vector& r,  const prevariable& n0)

80 85
{

......
93 98
\param r growth rate; differentiable scalar

94 99
\param n0 initial population size at t=0; differentiable vector

95 100
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

101
\ingroup ECOL

96 102
**/

97 103
dvar_vector logisticK( const dvector& t,  const prevariable& K,  const prevariable& r,  const dvar_vector& n0)

98 104
{

......
109 115
\param r growth rate; differentiable scalar

110 116
\param n0 initial population size at t=0; differentiable vector

111 117
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

118
\ingroup ECOL

112 119
**/

113 120
dvar_vector logisticK( const dvector& t,  const dvar_vector& K,  const prevariable& r,  const dvar_vector& n0)

114 121
{

......
126 133
\param r growth rate; differentiable vector

127 134
\param n0 initial population size at t=0; differentiable vector

128 135
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

136
\ingroup ECOL

129 137
**/

130 138
dvar_vector logisticK( const dvector& t,  const prevariable& K,  const dvar_vector& r,  const dvar_vector& n0)

131 139
{

......
142 150
\param r growth rate; differentiable vector

143 151
\param n0 initial population size at t=0; differentiable vector

144 152
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

153
\ingroup ECOL

145 154
**/

146 155
dvar_vector logisticK( const dvector& t,  const dvar_vector& K,  const dvar_vector& r,  const dvar_vector& n0)

147 156
{

......
161 170
\param r growth rate; differentiable scalar in a random effects model

162 171
\param n0 initial population size at t=0; differentiable scalar in a random effects model

163 172
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

173
\ingroup ECOL

164 174
**/

165 175
df1b2variable logisticK( const double& t,  const df1b2variable& K,  const df1b2variable& r,  const df1b2variable& n0)

166 176
{

......
175 185
\param r growth rate; differentiable scalar in a random effects model

176 186
\param n0 initial population size at t=0; differentiable scalar in a random effects model

177 187
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

188
\ingroup ECOL

178 189
**/

179 190
df1b2vector logisticK( const dvector& t,  const df1b2variable& K,  const df1b2variable& r,  const df1b2variable& n0)

180 191
{

......
189 200
\param r growth rate; differentiable scalar in a random effects model

190 201
\param n0 initial population size at t=0; differentiable scalar in a random effects model

191 202
\return  \f$\frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$

203
\ingroup ECOL

192 204
**/

193 205
df1b2vector logisticK( const dvector& t,  const df1b2vector& K,  const df1b2variable& r,  const df1b2variable& n0)

194 206
{

... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff