Revision 795 branches/replacement/src/linad99/dfgammp.cpp

dfgammp.cpp (revision 795)
4 4
 * Author: David Fournier
5 5
 * Copyright (c) 2009 ADMB Foundation
6 6
 */
7

  
8
/**
9
 * \file
10
 * This file deals with the Incomplete Gamma Functions
11
 * of variable types. All supporting mathematical functions
12
 * required to compute the Inmomplete Gamma Function
13
 * are included. They being: gamma function, log gamma,
14
 * and some polynomial evaluation functions.
15
 */
16

  
7 17
#if defined(USE_LAPLACE)
8 18
#  include <df1b2fun.h>
9 19
#else
10 20
#  include <fvar.hpp>
11 21
#endif
12
#define ITMAX 100
13
#define EPS 1.0e-9
14
//#define EPS 3.0e-7
15
#define FPMIN 1.0e-30
16 22

  
17 23
double get_values(double x,double y,int print_switch);
18 24
dvariable igam(const dvariable & _a, const dvariable & _x);
19 25
dvariable igamc(const dvariable & _a, const dvariable & _x);
20
   extern int mtherr(char* s,int n);
26
extern int mtherr(char* s,int n);
21 27

  
22 28
namespace Cephes
23 29
{
......
44 50
   dvariable polevl(const dvariable & x, const void *_coef, int N);
45 51
   dvariable p1evl(const dvariable & x, const void *_coef, int N);
46 52

  
47

  
48

  
49 53
   /**
50 54
    * \ingroup gammafunc
51 55
    * Stirling's formula (approximation to large factorials)
......
78 82
   /**
79 83
    * \ingroup gammafunc
80 84
    * Polynomial evaluation
81
    * \param x \f$x\f$
85
    * \param x \f$x\f$ the point to be evaluated
82 86
    * \param _coef The coefficents of the polynomial
83 87
    * \param N \f$N\f$ The degree of the polynomial
84 88
    * \return The polynomial evaluated at \f$x\f$
......
109 113
    * \ingroup gammafunc
110 114
    * Polynomial evaluation when leading coefficent is 1
111 115
    * (i.e. leading term is \f$x^N\f$)
112
    * \param x \f$x\f$
116
    * \param x \f$x\f$ the point to be evaluated
113 117
    * \param _coef The coefficents of the polynomial
114 118
    * \param N \f$N\f$ The degree of the polynomial
115 119
    * \return The polynomial evaluated at \f$x\f$
......
135 139

  
136 140
      return (ans);
137 141
   }
138
} // Cephes namespace
142
} // End Cephes namespace
139 143

  
140

  
141 144
/**
142 145
 * \ingroup gammafunc
143
 * Gamma Function
146
 * Gamma Function \f$\Gamma(x)\f$
144 147
 * \param xx1 \f$x\f$
145
 * \return The Gamma Function \f$\Gamma(x)\f$
148
 * \return The Gamma Function
146 149
 * 
147 150
 * \n\n Cephes Math Library Release 2.1:  December, 1988
148 151
 * Copyright 1984, 1987, 1988 by Stephen L. Moshier 
......
282 285
      return (z / ((1.0 + 0.5772156649015329 * x) * x));
283 286
}
284 287

  
285
//------------------------------------------------------------------
286

  
287

  
288 288
/**
289 289
 * \ingroup gammafunc
290
 * Log-gamma function
290
 * Log-gamma function \f$\ln(|\Gamma(x)|)\f$
291 291
 * \param xx \f$x\f$
292 292
 * \return natural log of the absolute
293
 *   value of the gamma function \f$\ln(|\Gamma(x)|)\f$
293
 *   value of the gamma function
294 294
 *
295 295
 * \n\n Cephes Math Library Release 2.1:  December, 1988
296 296
 * Copyright 1984, 1987, 1988 by Stephen L. Moshier
......
424 424
   return (q);
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff