ADMB Debugging Tutorial

September 1, 2020
Johnoel Ancheta

Describe how to use a debugger on ADMB programs.

Introduction

Debugging is a method used to help locate errors in ADMB programs. The kind of errors
include segmentation faults, division by zero and indexing out of array bounds. A debugger is
the application used for debugging. It runs the programs with an interactive shell. The shell can
run the program machine instructions to the source code line. This helps find where in the
source code that caused the issue. It is able to step through the program code line by line and
view values of variables. This tutorial will show how to use MinGW-w64 debugger with ADMB
programs in Windows.

GDB Debugger

The GNU Project developed gdb for debugging executables. The debugger is a tool for
examining the implementation of the source code by running each line one at a time. It can also
print the value of instances.

Mapping TPL to C++

To build an executable from a TPL file, it must be first converted to C++ code. The admb script
will do the conversion by using a parser. The parser reads the TPL, then generates C++ code
from a set of rules. Next the admb script will call the C++ compiler to build the executable from
the C++ code. By default, the admb script uses compiler options optimized for speed. Itis
recommended to use the debugging option with the admb script command to build an
executable for debug symbols. The section below will show how to build for debugging.

Mappings

The numbered list below is the sequence of an ADMB program. Each of the SECTIONS are
mapped to a C++ function. The C++ functions are used in the debugger to set breakpoints.

1. TOP_OF_MAIN_SECTION

int main(int argc,char * argv[])

2. PRELIMINARY_CALCS_SECTION

void model parameters::preliminary calculations()

3. DATA_SECTION

model data::model data(int arge,char * argv[])

4. PARAMETER_SECTION

)

model parameters::model parameters(int size, int argc,char * argv[])

5. PROCEDURE_SECTION

void model parameters::userfunction()

6. REPORT_SECTION

void model parameters::report(const dvector& gradients)

7. FINAL_SECTION

void model parameters::final calcs()

Debug Release

The ADMB debug release is mainly used for troubleshooting code. It has additional checks and
assert statements to ensure valid values. Also debug enables floating point exceptions for
overflows, division by zero and invalid function parameters. The debug symbols that are used
by a debugger contain source code information. The symbols result in larger size libraries in the
distributions. Using the debug release will cause the program to run slower because of the
extra testing. It is recommended to use the debug release for debugging only and not in
production programs.

Simple Debug

The procedure below will use the debugger gdb to run the simple example. Each step will show
and describe gdb shell commands used to control execution of program code. Also, some of the
steps will show how to display variables for debugging output.

Below is the simple.tpl file that will be used for the debug session.

/ Author: David Fournier
Copyright (c) 2009-2018 ADMB Foundation

DATA_SECTION
init_int n
init_vector x(1,n)
init_vector y(1,n)
PARAMETER SECTION
init_number b0
init number bl
vector yhat(1,n)
objective_function_value f
PROCEDURE_SECTION
yhat=b0+b1*x;
f=regression(y,yhat);

Prerequisites
e Rtools installed with gdb debugger.

Rtools 3.5 installations will already come with the gdb debugger.

For Rtools 4.0 installations, gdb will need to be manually installed. Click Rtools Bash
located In the Start Menu -> Rtools 4.0 folder. In the Rtools Bash command windows,
type the command below to install gdb. Read the package information link for details
https://packages.msys2.org/package/mingw-w64-x86_64-gdb.

§ pacman -S mingw-w64-x86_64-gdb
resolving dependencies.
looking for conflicting pe

Packages (4) mingw-w64-x86 64-expat-2.2.9-9002
mingw-w64-x86 64-readline-8.0.001-2

mingw-w64-x86 64-termcap-1.3.1-9002 mingw-w64-x86 64-gdb-9.1-9000

Total Download Size: 3.84 MiB
Total Installed Size: 13.54 MiB

:: Proceed with installation? [Y/n] y

https://packages.msys2.org/package/mingw-w64-x86_64-gdb

:: Retrieving packages...

mingw-w64-x86_64... 133.5KiB 692 KiB/s 00:00 [; 100%

3
mingw-w64-x86 64... 5.7 KiB 0.00 B/s 00:00 [# 100%
mingw-w64-x86 64... 283.7 KiB 2026 KiB/s 00:00 [110
0%
mingw-w64-x86 64... /s 00:01 100%
(4/4) checking in key i 100%
(4/4) checking p grity 100%

(4/4) loading pa 100%

(4/4) checking for file conflicts 1100%

(4/4) checking available disk space R

:: Processing package changes...

(1/4) installing mingw-w64-x86_64-expat 100%
(2/4) installing mingw-w64-x86_64-termcap 1100%
(3/4) installing mingw-w64-x86_64-readline 100%
(4/4) installing mingw-w64-x86_64-gdb [# /] 100%

e ADMB installed with debug libraries
o Download ADMB windows release with debug symbols from
https://github.com/admb-project/admb/releases/tag/admb-12.2
o Build ADMB with debug symbols. Read the procedure
http://www.admb-project.org/downloads/admb-12.2/BuildingSourceUnix.html. In
step two, build with debug symbols with command.

admb-12.2-src $ make DEBUG

Steps

1. Click Windows Command Prompt from Windows Start -> Windows System

2. Add paths for ADMB and C++ compiler to the system PATH.

C:\> set PATH=C:\ADMB-12.2\bin;C:\Rtools35\mingw_64\bin;%PATH%

Note — For Rtools 4, Use C:\Rtools40\mingw64\bin.

3. Define DEBUG macro to enable additional checks and set compiler CXX macro to g++.

C:\> set CXXFLAGS=-DDEBUG

C:\> set CXX=g++

4. Change to the simple example directory.

>d \ADMB-12.2\examples\admb\simple

https://github.com/admb-project/admb/releases/tag/admb-12.2
http://www.admb-project.org/downloads/admb-12.2/BuildingSourceUnix.html

5. Build the simple example with debug option -g.

CA\ADMB-12.2\examples\admb\simple> admb -g simple

Parse: simple.tpl
xxglobal.tmp
xxhtop.tmp
header.tmp
xxalloc.tmp
xxtopm.tmp

1 file(s) c
tpl2cpp -debug simple

Compile: simple.cpp
gt++ -c -std=c++11 -g -fpermissive -D_FILE OFFSET BITS=64 -DUSE_ADMB_CONTRIBS
-D USE MATH_DEFINES -I. -I"C:\ADMB-12.2\include" -1"C:\ADMB-12.2\include\contrib" -o simple.obj
simple.cpp

Linking: simple.obj
gt++ -static -g -o simple.exe simple.obj "C:\ADMB-12.2\lib\libadmb-contrib-mingw64-g++4-debug.a"

Successfully built 'simple.exe'.

6. Run program with debugger

C:\ADMB-12.2\examples\admb\simple> gdb simple
GNU gdb (GDB) 7.9.1
ight (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htmI>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Ty show copying"
and "show warranty" for details.
is GDB was configured as "x86_64-w64-ming
Type "show configuration" for configuration dete
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bug
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
apropos word" to search for commands related to "word"...
Reading symbols from simple...done.

(gdb)

Set the source directory (if needed). Change the highlighted text directory with the
ADMB src directory on the local computer. Ignore warning for recent source files.

C:\ADMB-12.2\examples\admb\simple> gdb --dircctory:_ simple

GNU gdb (GDB) 7.9.1

Copyright (C) 2015 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86 64-w64-mingw32".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>

Find the manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".

e "apropos word" to search for commands related to "word"...
Reading symbols from simple...done.

(gdb)

Alternative - Use directory command to set the relocated source directory in gdb shell.
Substitute the highlighted path with the admb src folder from the local machine.

Note — Must use double backslashes \\' to separate directories.

e dirccror,

Ignore the warning message below as long as the source and binary ADMB version are
the same.

warning: Source file is more recent than executable.

Read the link below for more details.
https://sourceware.org/qgdb/current/onlinedocs/qadb/Source-Path.html#set-substitute 002
dpath

7. In the gdb shell command, use the break command to set a breakpoint at main which is
the TOP_OF_MAIN_SECTION. A breakpoint will pause the run of the program before
executing code at the specified line.

(gdb) break main

Breakpoint 1 at 0x402cfc: file simple.cpp, line 117.

8. Use the list command to show the lines of code around line 117 in file simple.cpp.

(gdb) list simple.cpp:117

112
113 long int arrmblsize=0;

https://sourceware.org/gdb/current/onlinedocs/gdb/Source-Path.html#set-substitute_002dpath
https://sourceware.org/gdb/current/onlinedocs/gdb/Source-Path.html#set-substitute_002dpath

114

115 int main(int argc,char * argv[])
116 {

117 ad_set new_handler();

118 =&ad_boundf;

119 gradient_structure::set. NO_DERIVATIVES();
120 #ifdef DEBUG

121 #ifndef SUI

9. Use the run command to execute the simple program, but will pause at the breakpoint
line 117.

(gdb) run

Starting program: C:\ADMB-12.2\examples\admb\simple\simple.exe
[New Thread 1392 80]

[New Thread 1392.0x1410]

[New Thread 1392.0x3648]run

[New Thread 1392.0x3174]

Breakpoint 1, main (arge=1, argv=0x34515¢0) at simple.cpp:117
117 ad_set new_handler();

10. Use the next command to execute the current line, then pause run at the next line.

(gdb) next

118 ad_exit=&ad_boundf;

(gdb) next

119 gradient structure::set NO DERIVATIVES();

(gdb) next

126 gradient_structure::set YES SAVE VARIABLES VALUES();
(gdb) next

127 if (larrmblsize) arrmblsize=15000000;

11. Use the print command to display the current value.

(gdb) print arrmblsize
$1=0

12. Use watch command to notify when the value for arrmblsize in line 113 has changed,
then use the next command which will execute line 127 (see previous step).

(gdb) watch arrmblsize

Hardware watchpoint 2: arrmblsize
(gdb) next

Hardware watchpoint 2: arrmblsize

Old value =0

New value = 15000000

main (argc=1, argv=0x1e15e0) at simple.cpp:

128 model parameters mp(arrmblsize,argc,argv);

13. Use list command to display lines around the current line. Below are the maps of line
numbers for C++ to the TPL sections.

Maps
e Line 128 is the code for the DATA_SECTION and PARAMETER_SECTION.
e Line 130 is the function for PRELIMINARY_CALCS_SECTION.
e Line 131 is the function for PROCEDURE_SECTION, REPORT_SECTION and
FINAL_SECTION.

(gdb) list

123 #endif

124 auto start = std::chrono::high resolution_clock::now();
125 #endif

126 adient_structure: 'ES SAVE VARIABLES VALUES();

127 if (larrmblsize) arrm 5000000;

128 model parameters mp(arrmblsize,arge,argv);
129 mp.iprint=10;

130 mp.preliminary_calculations();

131 mp.computations(argc,argv);

132 #ifdef DEBUG

14. Use break and continue commands to execute till line 131.

(gdb) break 131

Breakpoint 3 at 0x402d66: file simple.cpp, line 131.
(gdb) continue

Continuing.

Breakpoint 3, main (arge=1, argv=0x33315¢0) at simple.cpp:131
131 mp.computations(a ;

15. Use the step command to execute lines in the mp.computations function, the use list to
view function code.

(gdb) step
function minimiz mputations (this=0x29afba8, argc=1, argv=0x33315¢0)
at nh99\modspmin. 32
tracing_message(traceflag,"A1");
gdb) list
27 extern admb_javapointers * adjm_ptr;

void function minimizer::computations(int argc,char *
?

/Itraceflag=1;

tracing_message(traceflag,"A1");

/if (option_match(arge,argv,"-gui")>-1)

Py

-
J
3
3
o
J

W N =

f
1

void vm_initialize(void);
//' vm_initialize();

W W W
U NN

> ¢

16.

17.

18.

19.

Use the break command to stop at the model paramerrs::userfunction which maps to the
PROCEDURE_SECTION in the TPL.

(gdb) break model parameters::userfunction
Breakpoint 2 at 0x4029a6: file simple.cpp, line 79.
(gdb) continue

Continuing.

Breakpoint 2, model parameters::userfunction (this=0x29afb20) at simple.cpp:79
79 £=0.0;

(gdb) list

74 likelihood function_value.allocate("likelihood_function_value");

75

76

77 void model parameters::userfunction(void)
78 4

79 £=0.0;

80 yhat=b0+t

81 f=regression(y,yhat);

82

83

Use the backtrace command to display the stack of functions.

(gdb) backtrace
#0 model parameters::userfunction (this=0x29afb20) at simple.cpp:79
#1 0x000000000042b312 in function minimizer::pre_userfunction (

at nh99\xmodelm3.cpp:433
#4 0x000000000042b9al in function_minimizer::computations! (this=0x29afba8,
)x32315e0) at nh99\modspmin 147
::computations (this=0x29afbas,
arge=1, argv=0x32315¢0) at nh99\modspmin.cpp:44
p:131

Use the up and down commands to move GDB display to functions in the stack.

Use the finish command to run the model parameters::userfunction, then stops at the next
line.

(gdb) finish
Run till exit from #0 model parameters::userfunction (this=0x29afb20)
at simple 79

function_minimizer::pre_userfunction (this=0x29afba8) at nh99\model7.cpp:582
582 if (lapprox)
(gdb) list

577 /[lapprox->num_separable calls=0;
578 lapprox->separable calls_counter
579
580
581 userfunction();
582 if (lapprox)
583 {
if (lapprox->he

f
v

lapprox->num_separable calls=lapprox->separable calls_counter;
b) backtrace

n\dl*“. _crit=0, x= 7g*...~7‘r m()x]‘)at(ﬁ\ 0)
e dIll _qnm c

dt nh%’ \moddm 3.c p:-L
#3 0x000000000042b 9‘11 in ‘rumtlon minimizer: Lomputdtmnsl (this=0x29afbas,

)()—Pb(w(n in function_minir ompulallom (this=0x29afba8,
32315¢0) at nh99\modspmin.cpp:44
()x()()()()()()()()()()-102 d88 in main (argc=1, argv=0x32315¢e0) at simple.cpp:131

20. Use the continue command to run program. Since there is a breakpoint at
model parameters::userfunction, the debugger will run the program and stop there.

odb) continue
‘ontinuing.

Initial statistics: 2 variables; iteration 0; function evaluation 0; phase 1
Function value 2.4980653e+001; maximun ient component mag -3.6127e+000
Var Value Gradient [Var Value Gradi [Var Value Grac

1 0.00000 -7.2781e-001 | 2 0.00000 -3.6127e+000 |

Breakpoint 2, model parameters::userfunction (this=0x29afb20) at simple.cpp:79
79 £=0.0;

(gdb) list

74 likelihood_function_value.allocate("likelihood function_value");

75

76

77 void model_parameters::userfunction(void)

78

79

81

)

SL

83

21. Use the print command to display the value of objective function value f after line 79 and
81 are executed.

(gdb) next

80 yhat=b0+b1%*x;

(gdb) print f->v->x
$ 0

f=regression(y,

(gdb) next

82

(gdb) print f->v->x

$3 =24.960634029001518

22. Use delete command to remove all breakpoints, then use the continue command to run
the program to the end.

(gdb) delete
Delete all breakpoints? (y orn) y

Continuing.

Initial statistics: 2 variables; iteration 0; function evaluation 0; phase 1
Function value 2.4980653e+001; maximum gradient component mag -3.6127e+000
Var Value Grad |[Var Value Gradient |Var Value Gradient

- final statistics:

2 variables; iteration 7; function evaluation 19

Function value 3.4513e+000; maximum gradient component mag -7.0014e-005
Exit code = 1; converg criter 1.0000e-004

Var Value Gradient |Var Value Gradient |Var Value Gradient

Estimating row 1 out of 2 for hessian
Estimating row 2 out of 2 for hessian
[Thread 844.0x30e8 exited with code 0]
[Thread 844.0x1b78 exited with code 0]
[Thread 844.0xd0c exited with code 0]
[Inferior 1 (process 844) exited normally]

GDB Scripting

GDB supports scripting in debug sessions which is useful for automating tasks. Below are
information for some scripting utilities.

gdbinit

The print command does not display the values for some ADMB types. To output the values,
the type must be dereferenced like in step 19 above. For higher dimensional arrays, it is more
complicated. Chris Grandin (@cgarandin) developed a script for displaying ADMB types in a
GDB shell. The script was not packaged with the debug release. So, download the script at

https://github.com/admb-project/admb/blob/admb-12.2/utilities/.gdbinit to the simple directory,
then use the command below to load the script.

https://github.com/cgrandin
https://github.com/admb-project/admb/blob/admb-12.2/utilities/.gdbinit

CA\ADMB-12.2\examples\admb\simple>gdb --init-command=.gdbinit --nx simple
GNU gdb (GDB) 7.9.1
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-w64-mingw32".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Loaded .gdbinit
ADMB debugging enabled.
Printing of ADMB structures:
dvariable - pdv dvariableName
vector, dvector - pvec vectorName
ivector - pivec ivectorName
dvar_vector - pdvec dvar_vectorName
matrix, dmatrix - pmat matrixName
imatrix - pimat imatrixName
dvar_ matrix - pdmat dvar matrixName
3d_array - p3d 3darrayName
For help on commands, type command name without arguments.
Reading symbols from simple...done.

(gdb)

The command above shows how to use the display functions. First set a break at the

model parameters::userfunction and run, then use the gdb print command to display f and yhat in
the simple PROCEDURE_SECTION. The resulting output only shows the attributes of the
types. The values are not displayed.

(gdb) break model parameters::userfunction

Breakpoint 1 at 0x4029a6: file simple.cpp, line 79.

(gdb) run

Starting program: C:\ADMB-12.2\examples\admb\simple\simple.exe
[New Thread 1392.0x2d80]

[New Thread 1392.0x1410]

[New Thread 1392.0x3648]

[New Thread 1392.0x3174]

Breakpoint 1, model parameters::userfunction (this=0x29afb20) at simple.cpp:79
79 £=0.0;
(gdb) print £
$1={
<named dvariable> = {
<dvariable> = {
<prevariable> = {
v = 0x4864430
}, <No data fields>},
<model name tag>= {
name = {
<clist> = {

next = 0x29afdf8
b
members of adstring:
shape = 0x4887be0,
s = 0x4887clf ">f"
j
. <No data fields>},
members of objective function value:
static pobjfun = 0x29afdf0,
static fun_without pen = 0,
static gmax = 0
1

s
(gdb) print yhat
$2 = {

<dvar vector>=

va = Oxceea038,
index min=1,
index max = 10,
link =0x4
shape = 0x48
s
<model name tag>
name = {
<clist> = {
= 0x29afd98
s
members of adstring:
shape = 0x4887a60,
s = 0x4887a9f ";yhat"

|
S

', <No data fields>}

To display the values, use the commands below from the .gdbinit script commands.

(gdb) pdv
pdv: dvariable value = 24.980653

(gdb) pdvec yhat

0.000000

GDB scripting is a tool that simplifies code testing. It can script multiple commands to display
variables and step through the source code. Below are a few links to show more advanced
methods of scripting.

Additional Reads

e https://sdimitro.github.io/post/scripting-gdb/
e https://condor.depaul.edu/glancast/373class/docs/gdb.html

https://sdimitro.github.io/post/scripting-gdb/
https://condor.depaul.edu/glancast/373class/docs/gdb.html

Bug Fix

Below is the bug fix procedure that is used.

Procedure

1. Must be able to duplicate the error. Remote debugging or guessing should be avoided.

2. Locate the line of the code when the error occurs. It will provide a clue to the cause of
error. Using a debugger is the best tool for locating the error.

3. Understand why it caused an error. Use gdb watch command to check for expected
values.

4. Create a unit or TPL test that duplicates the error.

5. Correct the error.

6. Run the test suite to ensure the changes do not break other functions.

For the ADMB Project, there are additional steps for testing with online continuous integration
servers. Also, admb uses git issues and branches to test and document changes.

GDB FPE Check

The steps below show how to manually check a function for Floating Point Exceptions (FPE)
using GDB shell and FPE Check Utility.

1.

2.

Create FPE test directory, the change to that directory.

C:\>mkdir fpe-test

C:\>cd fpe-test

Download FPE test file (fpe_test.tpl) and the FPE Check Utility (fpe_check.cpp) from the
ADMB git repository into the directory created in the previous step.

Build fpe_test.tpl and fpe_check.cpp with debug flags.

C:\fpe-test>admb -g fpe_test.tpl fpe_check.cpp

xxglobal.tmp
xxhtop.tmp

header.tmp
xxalloc.tmp
xxtopm.tmp

1 file(s) copied.
tpl2cpp -debug fpe test

https://raw.githubusercontent.com/admb-project/admb/master/tests/fpe/fpe_test.tpl
https://raw.githubusercontent.com/admb-project/admb/master/tests/fpe/fpe_check.cpp

* Compile: fpe_test.cpp
gt++ -c -std=c++11 -DDEBUG -g -fpermissive -D_FILE _OFFSET BITS=64 -DUSE_ADMB_CONTRIBS
SE. MATH_DEFINES -I. -I"c:\ADMB-12.2\include" -1"c:\ADMB-12.2\include\contrib" -o fpe test.obj
fpe_test.cpp

Compile: fpe_check.cpp
g++ -c -std=c++11 -DDEB -g -fpermissive -D_FILE OFFSET BITS=64 -DUSE_ADMB_CONTRIBS

-D_USE_MATH_DEFINES

fpe check.cpp
Linking: fpe test.obj fpe_check.obj
g++ -static -g -o fpe bj fpe_check.obj

"c:\ADMB-12.2\lib\libadmb-contrib-mingw64-g++4-debug.a"

Successfully built 'fpe_test.exe'.

4. Copy DAT from the simple example into fpt_test.dat.

b --directory=
GNU gdb (GDB) 7.9.1

free software: you are free to change and redi
There is NO WARRANTY, to the extent permitted by law.
and "show warranty" for details.
This GDB was configured as "x86_64-w64-mingw32".

<http://www.gnu.c /bugs/>

Find the GDB manual and other documentation resources online at:
://www.gnu.org/software/gdb/documentation/>

for commands related to "word"...

arning DMB-1 src: No such file or directory.
Reading symbols from fpe_test.exe...done.
(gdb) break model parameters::userfunction
Breakpoint 1 at 0x4029a6: file fpe_test.cpp, line 79.
(gdb) run
Starting program: C:\fpe-test\fpe test.exe
[New Thread 4356.0x34e4]
[New Thread 4356.0x1284]
[New Thread 4356.0x2804]
[New Thread 4356.0x2dc8]

Breakpoint 1, model parameters::userfunction (this=
at fpe_test.cpp:79

6.

7.

In the beginning of the model parameters::userfunction, initialize the FPE flags and check
that None is detected.

b) p fpe_init()

$14 =void

(gdb) p fpe_check()
Detected FPE:
None

$15 =void

Run to the end of the function with the finish command, then check FPE flags.

(gdb) list 81
76
77 void model parameters::userfunction(void)
78 4
79
80
81 f=regression(y,yhat);
82 fpe_invalid();
fpe_divbyzero();
fpe overflow();
85
(gdb) finish
Run till exit from #0 model parameters::userfunction (this=0x29bfae0)
at fpe_test.cpp:79
nan
inf
inf
function_minimizer::pre_userfunction (this=0x29bfb68) at nh99\model7.cpp:582
582 if (lapprox)
(gdb) p fpe_check()
Detected FPE:

Detected division by zero
Detected invalid argument

Detected overflow
$1 = void

8. The beginning of the previous command, the list command was used to display the

function body around line 81. The functions fpe_invalid(), fpe divbyzero() and
fpe_overflow() have code that would throw FPE exceptions. To view functions use the
list command with the name of the function.

Note — model parameters:: is prefixed to the function names.

(gdb) list model parameters::fpe_invalid

83 fpe divbyzero();

84 fpe overflow();

8

86

87 void model parameters::fpe_invalid(void)
88 !

89 cout << std::sqrt(-1) << endl;

90 !

91

92 void model parameters::fpe_divbyzero(void)
(gdb) list model parameters::fpe_divbyzero

88 {

89 cout << std::sqrt(-1) << endl;

90

91

92 void model parameters::fpe divbyzero(void)

93 |
94 double z=0.0;

95 double ret=5.0/ z;

96 cout << ret << endl;

97

(gdb) list model parameters::fpe_overflow

95 double ret=5.0/ z;

96 cout << ret << endl;

97

98

99 void model parameters::fpe_overflow(void)
100 {

101 double ret = DBL MAX * 2.0;

102 cout << ret << endl;

103}

104

9. Use quit command to exit the debugger. Type y to quit when prompted.

(gdb) quit
A debugging session is active.

Inferior 1 [process 10860] will be killed.

Quit anyway? (y orn) y

C:\fpe-test>

GDB FPE Check Script

Instead of manually retyping each command to check if a function generated a FPE, a script can
simplify it. The steps below show how to use the FPE Check script to check multiple functions
for Floating Point Exceptions (FPE) using GDB shell and FPE Check Utility.

Note — The script and fpe check.cpp utilities can be used to check for FPE in any ADMB
program.

1. Download fpe_check.gdb into the directory create above.

2. Run the command below to run gdb with script.

C:\fpe-test>gdb --command=fpe check.gdb fpe test

Note — The above command will output a lot of lines.

ldeas

Below are some ideas for development of the next release.

TPL FUNCTION in C++

Be able to define a TPL FUNCTION in a C++ source file instead of the TPL. This will decrease
the total line count of existing TPL files. Using multiple files will make developing and code
maintenance easier. Also, debuggers can step through the actual C++ function instead of the
mapped version. The admb script is able to build and link in multiple C++ files with the TPL.

Workflow

Describe the potential workflow to move an FUNCTION from the catage example into a C++ file.
Note — This is only a proposed feature, it has not been implemented into ADMB.

1. Change to the catage example directory.

C:\>cd admb-12.2\examples\admb\catage

2. Copy function body of FUNCTION evaluate the objective function from catage.tpl into C++
source file evaluate the objective function.cpp.

In catage.tpl,

FUNCTION get catch at age

C=elem_prod(elem_div(F,Z),elem_prod(1.-S,N));

https://raw.githubusercontent.com/admb-project/admb/master/tests/fpe/fpe_check.gdb

FUNCTION evaluate the objective function
functions to ° ularize " the solution
f+=.01*norm2(log_relpop);
avg F=sum(F)/double(size count(F));
if (last_phase())
l
// a very small penalty on the average fishing mortality
f+=.001*square(log(avg_F/.2));

else
S
L

f+=1000.*square(log(avg_F/.2));

f+=0.5*double(size count(C)+size count(effort devs))

g(sum(elem_div(square(C-obs_catch at age),.01+C))

+ 0.1*norm2(effort_devs));

REPORT_SECTION
report << "Estimated numbers of fish " << endl;
report << N << end];

report << "Estimated n

To create evaluate the objective function.cpp, modify the template below.

// Replace TPL_NAME with the filename of TPL
#include <TPL NAME.htp>

Replace FUNCTION NAME with the function from TPL
void model parameters::FUNCTION NAME()

f
v

// Move function body contents here.

The evaluate the objective function.cpp should like the text below.

#include <catage.htp>

he b of evaluate tl jective_function from TPL
// Notice the body below is the same as in the catage.tpl
void model parameters::evaluate the objective function()
f

1

penalty functions to "“regularize " the solution

f+=.01*norm2(log_relpop);

avg_F=sum(F)/double(size_count(F));

if (last_phase())

a very small penalty on the average fishing mortality

f+=.001*square(log(avg_F/.2));
1
]

else

f+=1000.*square(log(avg_F/.2));

double(size count(C)+size
y(sum(elem_div(square(C-obs_catch at ¢

+ 0.1*norm?2(effort_devs));

3. Delete the function body in the TPL, and declare only the function name in the catage.tpl
file with a semicolon(;) at the end. The result will look like the following.

FUNCTION get catch at _age
C=elem_prod(elem_div(F,Z),elem_prod(1.-S,N));

FUNCTION evaluate the objective function;

REPORT SECTION
report << "Estimated numbers of fish " << endl;
report << N << end];

report << "Estimated numbers in catch " << endl;

Note - The body evaluate the objective function is no longer defined. The code was
moved and defined in a C++ file. The declaration is still needed by the admb script to
add member function into the model parameters class.

4. Build catage executable using catage.tpl and evaluate the objective function.cpp using the
command below.

C:\admb-12.2\examples\admb\catage> admb catage.tpl evaluate the objective function.cpp

More Information

Websites

e ADMB Project
e GDB

e MinGW-w64
e Rtools

Mailing Lists

e ADMB Users is the main mailing list. Email users@admb-project.org to contact the
group.
e ADMB Developers is for core team discussions. The email is

developers@admb-project.org.

mailto:users@admb-project.org
mailto:developers@admb-project.org

