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Deterministic models

e A deterministic model is a model where observation noise is ignored

Typically catches are assumed known without error

Most commonly applied fish stock assessment models are (semi-)deterministic

These algorithms work (very simply put) by:

0: Guess the number of survivors Nai1, and Ny y 41

1: Back calculate () all N, , by subtracting catch and natural mortality

2: Use surveys to adjust all IV, , and update survivors accordingly

3: Repeat 1-3 until survivors converge Year e.g. 19882011

Doing 0-1 just ones is known as N N

Virtual Population Analysis Age N N
e.g. N Cay N | Nayt1
1-7 R :

N
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Features of deterministic models

+ Super fast to compute
+ Fairly simple to explain the path from data to stock numbers (especially VPA)
— Difficult to explain why it works (converges), and what a solution mean

— These algorithms contain many ad-hoc settings (shrinkage, tapered time weights, ...)

that makes them less objective
— No quantification of uncertainties within model

7 What exactly is the model
- The assumptions are difficult to identify and verify

- With no clearly defined model more ad-hoc methods are needed to make predic-

tions

- No framework for comparing models (different settings)
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Example: F-shrinkage for Eastern Baltic Cod
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e These differences are not small and theoretical
e There are no objective way to choose between these two deterministic approaches

e Things would be simpler if we had a statistical model
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A full parametric statistical model

The log catches are assumed to follow:

Iy
log(Cay) ~ N (log <Z Y

a,y

(1— e_Z‘l’y)Na,y> ,ag) , where

Foy = fySa, with Sq—5 = Sq=6 = Se=7 =1, and Z, , = F,y + Mgy,
The log catches from the survey are assumed to follow:
log(Ia,y) ~ N (log (Qae_Z%yTNa,y) ,0?) , Where

T is the fraction into the year where the survey is taken, and (), is catchability

parameter.

The stock sizes are assumed to follow:
Na,y _ Na—l,y—le_Za_Ly_l
Notice that it does not define N in the first year and for the youngest age.

So the model parameters are the undefined N’s, fy, Sq, Qa, 0¢, and o,
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Fully parametrized statistical assessment models

e A statistical® model acknowledges observation noise
e The error structure is part of the model description

e To find the quantities of interest (e.g. Ny, Fpy, and observation uncertainties) the
likelihood of the actual observations is optimized w.r.t. the model parameters.

e Parametrized statistical assessment models have a number of benefits:
+ All model assumptions are transparent
+ Different model assumptions can be tested against each other (e.g. is F5 = Fg?)
+ Different data sources can be included and correctly and objectively weighted

+ Estimation of uncertainties are an integrated part of the model

e But also a few difficulties:

— Trade-off between the number model parameters and flexibility of the model
(e.g. Foy vs. Foy = Safy)

— More advanced software needed

%a.k.a. stochastic
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Problems we wish to solve

e Deterministic approaches
— Catch at age assumed known without error
— Procedures not models
— Convergence of a deterministic procedure

— Ad-hoc adjustments

e Full parametric statistical models
— Parametric F—structure (e.g. multiplicative)

— Trade off between flexible with (too) many parameters and rigid with tractable

number of parameters

— Number of parameters increase with every new year of data added
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State-space assessment models

e This model class® is used in most other quantitative fields
e It is a very useful extension to full parametric statistical models.

e Introduced for stock assessment by Gudmundsson (1987,1994) and Fryer (2001)

e The reason state-space models have not been more frequently used in stock assessment

is that software to easily handle these models has not been available
e Can give very flexible models with low number of model parameters
e For instance we can include things like:

F3, 1s a random walk with yearly variance o’

®a.k.a. random effects models, mixed models, latent variable models, hierarchical models, ...
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Illustration of the three types of models

Fishing mortality

True unobserved random walk

o o  Noisy observations

— Deterministic reconstruction

"‘ = Fully parametrized (paired) reconstruction
) J— 95% confidence limits

— State—space reconstruction
=== 05% confidence limits

Time
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Example: F5_, for North Sea Cod

1.2

1.0

0.8 —

0.4 —

0.2

0.0

1970 1980 1990

Year

2000



~anielsen/index.html

Model

States are the random variables that we don’t observe (N, Fg y)

(log(Ny)> . (log(Ny_1)> .

10g(Fy) log(Fy—l)

Observations are the random variables that we do observe (C, ,, I (S))

a,yr La,y
<1 ﬂ$>O<F >+%
og(ly ") Y

Model and parameters are what describes the distribution of states and observations

through 7', O, n,, and g,.

Parameters: Survey catchabilities, S-R parameters, process and observation variances.

All model equation are as expected:
e Standard stock equation

e Standard stock recruitment (B-H, Ricker, or RW)

e Standard equations for total landings and survey indices
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Numerical Methods

e Unscented Kalman Filter v/
e Laplace approximation v/

e Sampling based methods v/

(Numerical methods are needed to calculate the marginal distribution)

Optimization is done using AD Model Builder
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Avoiding ad-hoc choices — Eastern Baltic Cod
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e Using the State-space Assessment Model (SAM) gives us an objective criteria
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Evolving selectivity — North Sea Cod
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Convergence issues — North Sea Haddock
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Features of the State-space assessment model

e Statistical model
— Maximum likelihood estimation of model parameters
— Estimation of uncertainties are an integrated part of the model

— Prediction is straight-forward

e Consistent treatment of all N,

. Allows selectivity to evolve
e Built-in (objective!) ‘F-shrinkage’ and ‘tapered time weights’
e Nicely handles missing observations

. Room for additional features
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Summary

e State-space assessment model is a valid alternative when:
— Catches cannot be considered know without error
— Quantification of uncertainties are needed
— Ad-hoc specifications are problematic
— Parametric structures are considered too rigid

— The number of model parameters are worrying
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Appendix
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Status

e Primary model in ICES for:
— Western Baltic Cod
— NE Atlantic Blue Whiting
— Kattegat Cod
— North Sea Cod
— Skagerrak Sole
— North Sea Herring

— Bothnian Sea Herring

e Exploratory model in ICES for:
Eastern Baltic Cod, North Sea Sole, North Sea Haddock, Skagerrak Plaice

e Quick tests for some other stocks:
Western Baltic herring, 3PS Cod, 4VWX Herring, Greenland Halibut SA24+3KLMNO,

American Plaice, Namibian Hake, Georges Bank Yellowtail Flounder, ...



~anielsen/index.html

Random effects in AD Model Builder

e In random effects models we have
— Random variables we observe: x
— Random variables we do not observe: z

— Model parameters we want to estimate: 6
e If we had observed x and z we would have a joint likelihood L(z, z, 0)

e but z is unobserved so we have to estimate 6 in the marginal likelihood:
L(x,0) = /L(x,z,@)dz

e This requires a high dimensional integral — which is difficult
e This is (part of) the reason MCMC methods are so widely used

e MCMC can be slow, difficult to judge convergence, and in tools like winBugs a prior

must be assigned to everything — even when you have no prior information.

e AD Model Builder has a better solution
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Laplace approximation

e Want to compute the marginal likelihood for a given 6 value:

L(z,0) = /L(a:,z,@)dz

First the joint likelihood L(x, z,0) is optimized w.r.t. z.
e This optimization yields an estimate Z, and an estimated hessian H(Z).

e Next a Gaussian approximation is assumed and the result (apart from a constant) is:
L(z,0) ~ |det(H(2))| ™" L(x, 2, 0)

e Notice that when defined in this way Z and H(Z) and also depend on @, which makes
AD of this pretty difficult, but all solved for us in AD Model Builder.

Actually this is all very simple to use. All we have to do is:
— Code up the joint negative log likelihood

— declare as random_effects_vector z(1,n);
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From Fryer’s listed disadvantages

e Requires normally distributed errors. No, but they are still convenient.

e Requires linear approximation of non-linear equations. Not anymore.

e There is some arbitrariness in the starting values. Not anymore.

e The likelihood can be very flat. No change.

e Maximum likelihood estimation can take a long time. 1-2 minutes on my laptop.
e Initial coding is hard. ADMB makes it easier

e Favours status quo so struggles to pick up a collapsing stock.
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Allow sharp jumps

e In the standard model Alog F}, = log F}, — log F},_1 is assumed Gaussian

e Instead use a mixture, such as: Alog £}, ~ (1 —p)N(.,.) +pti(.,.)
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Allow sharp jumps - results

e Allowing the t-jump-fraction p

to be estimated.

No change.
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Correlated Random Walks

e Instead of independent random walks for F' at different ages, we can allow those

random walks to be correlated

Alog(F) ~

N(0,%)

e The covariance matrix X is defined via the random walk variances, and the correlation

coefficients p; ; = X i /\/ 22, 4

e We assume the very simple structure

1,
pij =
P,

fori =7

otherwise
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Exercise

e Start with the full parametric catch-at-age model fsa.tpl for North Sea Cod.
e Modify the code to make recruitment a random walk.
e Compare the fits

e Discuss pros and cons.
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