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1 Introduction

This document serves two purposes:

• Demonstrate how simple nonlinear mixed-effects models can be fitted in R and AD Model

Builder

• Evaluate the estimation performance of models implemented in R and AD Model Builder
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2 Methods

2.1 Data

The data describe the growth of orange trees (Table 1, Figure 1). The trunk circumference of 5

trees is measured at 7 different ages, giving a total of 35 datapoints. These data were used as

example data by Pinheiro and Bates (2000, Ch. 8). The Orange data object is among the core

datasets that come with R.

Table 1. Growth of orange trees. Trunk circumference at
breast height of 5 trees measured at 7 different ages.

Age Circumference (mm)
(days) Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

118 30 33 30 32 30
484 58 69 51 62 49
664 87 111 75 112 81

1004 115 156 108 167 125
1231 120 172 115 179 142
1372 142 203 139 209 174
1582 145 203 140 214 177
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Figure 1. Growth of orange trees. Trunk circumference at breast
height of 5 trees measured at 7 different ages. Tree numbers are shown
on the right.
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2.2 Model

Pinheiro and Bates (2000, pp. 356,360) used the following mixed-effects logistic model to analyze

the orange tree growth data,

yij =
φ1 + bi

1 + exp[−(xij−φ2)/φ3]
+ εij , εij ∼ N(0, σ2)

where yij is the circumference of tree i at time j, x is the age in days, φ1 is the asymptote

(maximum circumference), φ2 is the inflection point (age when trees have reached half maximum

circumference), and φ3 is a scale parameter (days it takes to grow from 50% to 73% of maximum

circumference1).

The asymptote varies between trees as a random effect:

bi ∼ N(0, σ2
b )

The traces in Figure 1 can be used to get sensible starting values for the three parameters and set

the initial asymptote φ1 =200, the inflection point φ2 =800, and the scale parameter φ3 =400.

Symmetric confidence limits around the φ regression coefficients are constructed by multiplying the

estimated standard error with the normal quantile z:

CIφ̂i
= φ̂i ± zα/2 ŜEφ̂i

Asymmetric confidence limits around the σ and σb standard deviations are based on the standard

error of the log-transformed parameters:

CIσ̂ = exp
(

log σ̂ ± zα/2 ŜElog σ̂

)
R

Implementing the model in R is easy after loading the ‘nlme’ package:

fm <- nlme(circumference∼ phi1/(1+exp(-(age-phi2)/phi3)),
fixed=phi1+phi2+phi3∼ 1, random=phi1∼ 1|Tree,
data=Orange, start=c(phi1=200,phi2=800,phi3=400))

There is also a “self-starting” SSlogis function in R, specifically for fitting logistic models, but

the above is a basic general approach for any nonlinear mixed-effects model.

1The 73% comes from 1/[1+exp(−1)].
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ADMB

In ADMB, the data and model are in two different text files, and the initial parameter values are

in a third text file.

The data are in a file called ora.dat,

# Number of trees (M)
5

# Number of ages (n)
7

# Age (x, in days)
118 484 664 1004 1231 1372 1582

# Circumference (y, in mm)
30 58 87 115 120 142 145
33 69 111 156 172 203 203
30 51 75 108 115 139 140
32 62 112 167 179 209 214
30 49 81 125 142 174 177

the model code is in a file called ora.tpl,

DATA_SECTION
init_int M
init_int n
init_vector x(1,n)
init_matrix y(1,M,1,n)

PARAMETER_SECTION
init_number phi1
init_number phi2
init_number phi3
init_number logSigma
init_number logSigmaB(3) // estimated in phase 3
random_effects_vector b(1,M,2) // estimated in phase 2
sdreport_number sigma
sdreport_number sigmaB
matrix yfit(1,M,1,n)
number RSS
objective_function_value f

PROCEDURE_SECTION
sigma = exp(logSigma);
sigmaB = exp(logSigmaB);
for (int i=1; i<=M; i++)
{

for (int j=1; j<=n; j++)
{

yfit(i,j) = (phi1 + b(i)) / (1.0 + exp(-(x(j)-phi2)/phi3));
}

}
RSS = sum(square(y-yfit));
f = 0.5*M*n*log(2.0*M_PI) + M*n*logSigma + RSS/(2.0*square(sigma));
f += 0.5*M*log(2.0*M_PI) + M*logSigmaB + sum(square(b))/(2.0*square(sigmaB));
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and the initial parameter values are in a file called ora.pin:

# phi1
200

# phi2
800

# phi3
400

# logSigma
1

# logSigmaB
0

# b (1,M)
0 0 0 0 0

The ADMB implementation is a simplistic one, not taking advantage of efficiency improvements

such as separable functions and estimating unscaled random effects (Skaug and Fournier 2006,

Fournier et al. 2012).

The model is compiled with the shell command

admb -r ora

and then run:

ora

2.3 Simulations

10 000 datasets are generated (Table 2) and the R and ADMB model implementations are evaluated

in terms of computational speed, convergence, bias, and coverage probability.

Table 2. Parameter values used to simulate
datasets for the second part of this study.

Parameter Value

φ1 191.05
φ2 722.54
φ3 344.15
σ 7.85
σb 31.48
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3 Results

3.1 Model fit to original data

R

The R command

summary(fm)

summarizes the model fit,

Nonlinear mixed-effects model fit by maximum likelihood
Model: circumference ∼ phi1/(1 + exp(-(age - phi2)/phi3))
Data: Orange

AIC BIC logLik
273.1693 280.9461 -131.5847

Random effects:
Formula: phi1 ∼ 1 | Tree

phi1 Residual
StdDev: 31.48254 7.846255

Fixed effects: phi1 + phi2 + phi3 ∼ 1
Value Std.Error DF t-value p-value

phi1 191.0455 16.15380 28 11.82666 0
phi2 722.5357 35.14849 28 20.55666 0
phi3 344.1529 27.14659 28 12.67757 0
Correlation:

phi1 phi2
phi2 0.375
phi3 0.354 0.755

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.9147537 -0.5351318 0.1436489 0.7309596 1.6615020

Number of Observations: 35
Number of Groups: 5

and

ranef(fm)

shows the random effects:

phi1
3 -37.000971
1 -29.405325
5 -5.178094
2 31.564769
4 40.019621
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ADMB

The ADMB executable produces several output files.

The negative log-likelihood and parameter estimates are in a file called ora.par,

# Number of parameters = 5 Objective function value = 131.572 Maximum gradient compon...

# phi1:
192.053262266
# phi2:
727.906256812
# phi3:
348.073016216
# logSigma:
2.05962317252
# logSigmaB:
3.45462142798
# b:
-29.5622333483 31.7278488346 -37.1935580846 40.2245465263 -5.19720349330

and standard errors and correlations are in a file called ora.cor:

The logarithm of the determinant of the hessian = -11.7684
index name value std.dev 1 2 3 4 5 6...

1 phi1 1.9205e+02 1.5658e+01 1.0000
2 phi2 7.2791e+02 3.5249e+01 0.3937 1.0000
3 phi3 3.4807e+02 2.7080e+01 0.3732 0.7747 1.0000
4 logSigma 2.0596e+00 1.2910e-01 0.0002 0.0001 0.0010 1.0000
5 logSigmaB 3.4548e+00 3.2425e-01 0.0414 0.0987 0.0913 -0.0079 1.0000
6 b -2.9562e+01 1.4739e+01 0.8957 0.0671 0.0601 -0.0104 0.0323 ...
7 b 3.1728e+01 1.4742e+01 0.8391 -0.0677 -0.0642 0.0111 -0.0344 ...
8 b -3.7194e+01 1.4759e+01 0.9007 0.0808 0.0749 -0.0130 0.0403 ...
9 b 4.0225e+01 1.4767e+01 0.8301 -0.0864 -0.0796 0.0141 -0.0435 ...
10 b -5.1972e+00 1.4700e+01 0.8734 0.0064 0.0089 -0.0018 0.0053 ...
11 sigma 7.8430e+00 1.0125e+00 0.0002 0.0001 0.0010 1.0000 -0.0079 ...
12 sigmaB 3.1653e+01 1.0264e+01 0.0414 0.0987 0.0913 -0.0079 1.0000 ...

Alternatively, the point estimates and standard errors (without correlations) can be found in a file

called ora.std.
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In summary, the estimates are quite similar between R and ADMB (Table 3, Figure 2).

Table 3. Estimated parameters, random effects, and negative log likelihood
of the model, as implemented in R and ADMB.

R ADMB
Value 95% CI Value 95% CI

φ1 191.05 (159.41, 222.69) 192.05 (161.36, 222.74)
φ2 722.54 (653.69, 791.38) 727.91 (658.82, 797.00)
φ3 344.15 (290.98, 397.32) 348.07 (294.99, 401.15)
σ 7.85 (6.09, 10.11) 7.84 (6.09, 10.10)
σb 31.48 (16.68, 59.43) 31.65 (16.76, 59.76)

b1 −29.41 −29.56
b2 31.56 31.73
b3 −37.00 −37.19
b4 40.02 40.23
b5 −5.18 −5.20

− logL 131.58 131.57
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Figure 2. Model fit to the data. The fitted values from R and ADMB
are indistinguishable in this figure. Tree numbers are shown on the
right.
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3.2 Performance with simulated data

Speed

Fitting 10 000 models took 7:37 minutes in R (0.05 sec/run) and 56:37 minutes in ADMB (0.34

sec/run) on an old laptop computer, so the model runs seven times faster in R than in ADMB. If a

similar model was to be used in a computationally intensive simulation study, it would be worthwhile

to take advantage of efficiency improvements such as separable functions and estimating unscaled

random effects in ADMB (Skaug and Fournier 2006, Fournier et al. 2012).

Convergence

Out of 10 000 simulated datasets, 13 model runs did not converge, both in R and ADMB. In R,

non-convergence was identified using the intervals function, where 13 models returned either an

error or an upper σb confidence limit greater than 1010. Likewise, non-convergence in ADMB was

identified from the standard error of log σ̂b being either NA or greater than 1010. This occurred in

the same set of 13 simulated datasets.

To circumvent the problem of non-convergence, 13 additional simulated datasets were generated.

The subsequent analysis of bias and coverage probability is therefore based on 10 000 converged

simulations.
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Bias

In both R and ADMB, the φ parameter estimates are unbiased, but σ and σb are underestimated

with a relative bias of around −0.04 and −0.19 (Table 4, Figure 3). In terms of bias, the difference

between R and ADMB is negligible.

Table 4. Median of 10 000 parameter estimates compared to
the true parameter values used from the operating model.
The relative bias is calculated as median((θ̂−θ)/θ).

R ADMB
True Median Bias Median Bias

φ1 191.05 190.78 0.00 191.59 0.00
φ2 722.54 718.62 −0.01 723.31 0.00
φ3 344.15 340.72 −0.01 344.04 0.00
σ 7.85 7.51 −0.04 7.51 −0.04
σb 31.48 25.52 −0.19 25.66 −0.18
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Figure 3. Distribution of point estimates (Tukey boxplots) compared to the true parameter value
(red line) of each parameter. Fourteen σ estimates are outside the y-axis limits in the case of ADMB.
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Coverage probability

Analysis of 10 000 confidence intervals the 90% confidence level shows that both R and ADMB

generate confidence intervals that cover the true parameter less than 90% of the time (Table 5).

The performance is poor for σb and φ1, with coverage probability around 78% and 82%, but

considerably better for the other parameters.

Table 5. Coverage probability of 90% confidence
intervals generated using R and ADMB. Ideally,
the coverage probability at this confidence level
should be 0.900 for every parameter.

R ADMB

φ1 0.824 0.813
φ2 0.884 0.879
φ3 0.886 0.877
σ 0.861 0.860
σb 0.783 0.787

Analysis of confidence levels ranging from 0 to 99% shows the same trends (Figure 4). Both R and

ADMB generate confidence intervals that are too narrow, especially for σb and φ1. Overall, R and

ADMB show similar performance in terms of coverage probability: R performs slightly better for

the φ parameters, but ADMB performs slightly better for the problematic σb parameter.
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Figure 4. Coverage probability for confidence intervals evaluated at several confidence levels (0, 10, 20,
30, 40, 50, 60, 70, 80, 90, and 99%). Each panel shows the performance of R (circle) and ADMB (cross)
for a given parameter.
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4 Discussion

We have demonstrated how simple nonlinear mixed-effects models can be fitted in R and AD Model

Builder.

For this basic example, R and ADMB show similar estimation performance on the whole. To fit a

mixed-effects logistic growth model to the orange tree data, it is easier and faster to use the ‘nlme’

package in R, yielding similar results as ADMB. One possible reason to use ADMB for analyzing

this dataset might be to explore other modelling options (statistical assumptions and methods)

that are not provided by the nlme function in R.
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