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Arni Magnusson1,2, André E Punt1 & Ray Hilborn1

1School of Aquatic and Fishery Sciences, University of Washington, PO Box 35520, Seattle, WA 98195, USA; 2Marine

Research Institute, Skulagata 4, PO Box 1390, 121 Reykjavik, Iceland

Introduction 2

Which method performs best? 2

Previous comparison studies 3

This study 4

Methods 4

Operating model 4

Estimation model 5

Reference points 6

Evaluating uncertainty 6

Delta method 6

Bootstrap 7

Abstract

Fisheries management depends on reliable quantification of uncertainty for decision-

making. We evaluate which uncertainty method can be expected to perform best for

fisheries stock assessment. The method should generate confidence intervals that are

neither too narrow nor too wide, in order to cover the true value of estimated

quantities with a probability matching the claimed confidence level. This simulation

study compares the performance of the delta method, the bootstrap, and Markov

chain Monte Carlo (MCMC). A statistical catch-at-age model is fitted to 1000

simulated datasets, with varying recruitment and observation noise. Six reference

points are estimated, and confidence intervals are constructed across a range of

significance levels. Overall, the delta method and MCMC performed considerably

better than the bootstrap, and MCMC was the most reliable method in terms of worst-

case performance, for our relatively data-rich scenario and catch-at-age model, which

was not subject to substantial model misspecification. All three methods generated

too narrow confidence intervals, underestimating the true uncertainty. Bias

correction improved the bootstrap performance, but not enough to match the

performance of the delta method and MCMC. We recommend using MCMC as the

default method for quantifying uncertainty in fisheries stock assessment, although

the delta method is the fastest to apply, and the bootstrap is useful to diagnose

estimator bias.
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Introduction

Which method performs best?

Fisheries management relies not only on point

estimates of key quantities, such as biomass and

harvest rate, but also on the uncertainty about these

estimates. The uncertainty can be used to convey

likely outcomes resulting from different manage-

ment decisions, or incorporated into management

strategy evaluation to find a long-term harvest

strategy that performs well in face of uncertainty.

When estimating measurement uncertainty, fish-

eries scientists generally choose the statistical

method they are most familiar with, or one that

has become traditional for a particular stock. Three

commonly used methods that will be evaluated here

are the delta method, the bootstrap, and Markov

chain Monte Carlo (MCMC) simulation. These

methods have been shown to perform well with

simple models, when all assumptions are met

(Oehlert 1992; Efron and Tibshirani 1993; Gelman

et al. 2004). In this study, we ask the question:

given a typical age-structured stock assessment

model and simulated datasets, which method per-

forms best?

Patterson et al. (2001) provide a thorough review

of uncertainty methods and describe three

paradigms for evaluating uncertainty in stock

assessment: frequentist, likelihood, and Bayesian

inference. For the purposes of fisheries stock assess-

ment, the theoretical difference between these

paradigms is often ignored in practice (Restrepo

et al. 2000; Patterson et al. 2001; Gavaris and

Ianelli 2002; Hilborn 2003), and the methods are

all used to express the plausible range of estimated

quantities. In the strict frequentist sense, a confi-

dence interval is a probabilistic statement about the

proportion of such intervals that would cover the

true parameter value in repeated experiments

(Neyman 1937; Casella and Berger 2002). This

frequentist statement treats the interval limits as

random and the parameter as fixed, in the context of

repeated experimental trials, and is therefore quite

meaningful in a simulation study like this one, but it

does not directly answer the relevant questions for

environmental decision-making (Ellison 1996; Punt

and Hilborn 1997; Ascough et al. 2008). Bayesian

inference, on the other hand, treats the interval

limits as fixed and the parameter as random, leading

to an intuitive statement about the probability that

the true parameter value lies in the interval. The

Bayesian interval is sometimes called a ‘credible

interval’ (Casella and Berger 2002), a ‘posterior

interval’ (Gelman et al. 2004), or simply a ‘confi-

dence interval’ (Hilborn and Mangel 1997; Clark
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2005) when the theoretical difference is considered

of secondary importance, as is the case in this study.

For the purposes of this study, an uncertainty

method is considered to perform well when it

generates x% confidence intervals for estimated

quantities that contain the true value approxi-

mately x% of the time. The method should generate

neither too narrow intervals that underestimate

uncertainty, nor too wide intervals that overesti-

mate uncertainty.

The delta method was introduced by Cramér

(1946) and popularized in ecological modelling by

Seber (1973). Most applications of the delta method

in stock assessment (e.g. Booth and Quinn 2006;

Trzcinski et al. 2006; McGarvey et al. 2007) use the

AD Model Builder programming framework to

automate the computation of the required partial

derivatives (Schnute et al. 1998; Fournier et al.

2012). The bootstrap was introduced by Efron

(1979) and popularized by Efron and Tibshirani

(1993). Early applications of the bootstrap in stock

assessment include Mohn (1993) and Punt and

Butterworth (1993). Variations of the bootstrap are

outlined by Patterson et al. (2001), citing Gavaris

and Van Eeckhaute (1998) as the current recom-

mended bootstrap method for stock assessment.

MCMC simulation of probability distributions was

introduced by Metropolis et al. (1953) and Hastings

(1970), and popularized in fisheries circles by

Gelman et al. (1995). The potential usefulness of

MCMC in stock assessment was described by

McAllister and Ianelli (1997) and Punt and Hilborn

(1997), with early applications including Punt and

Kennedy (1997), Virtala et al. (1998), and Patter-

son (1999).

Patterson et al. (2001) list five desirable properties

of methods quantifying uncertainty. They should be

(i) based on statistical distributions derived from data

rather than arbitrarily chosen distributions,

(ii) unbiased, (iii) accurate, (iv) use few distributional

assumptions and be robust to misspecifications of

such assumptions, and least importantly (v) easy to

understand and implement. They mention that the

bootstrap and MCMC have become more common

than the delta method in fisheries stock assessment

to avoid restrictive distributional assumptions. Hil-

born (2003) noted that the use of the bootstrap has

faded in recent years, as Bayesian methods have

grown in popularity, because of their intuitive

probability statements and theoretical and technical

progress in this field of computational statistics. The

bootstrap has been described as an automatic

processor for frequentist inference, with MCMC as

its Bayesian counterpart (Efron 2000).

Previous comparison studies

There are mainly two approaches to compare the

performance of uncertainty methods, either using

real stock assessment data or using simulated data.

With real data, one can compare the estimated

uncertainty for each method and speculate why

differences occur. With simulated data, one knows

the true value of the estimated quantities and can

therefore quantitatively judge the performance of

each method. A simulation study can use a

relatively complex operating model to generate the

simulated datasets and a simpler assessment model

to fit those datasets, or use the same model to violate

fewer assumptions.

Mohn (1993) compared the delta method and

bootstrap, fitting an age-structured model to actual

cod data. Retrospective analysis was used to

approximate the true estimated values, showing

that the delta method tended to underestimate

uncertainty. Gavaris (1999) also compared the

delta method and the bootstrap, fitting an age-

structured model to haddock data. The bootstrap

distribution indicated skewed uncertainty about

stock abundance, implying that the delta method

with a symmetric Gaussian distribution would be

inappropriate for statistical inference. Patterson

(1999) compared the bootstrap and MCMC, fitting

an age-structured model to herring data and noted

that MCMC generated wider confidence intervals

than the bootstrap. Gavaris et al. (2000) compared

the delta method, the bootstrap, and MCMC and

analyzing data from three stocks using two age-

structured models. The uncertainty methods gave

somewhat different results, but no clear or consis-

tent trends emerged. Booth and Quinn (2006)

compared the delta method and MCMC, fitting a

simple age-structured model to monkfish data. The

two methods gave similar results when non-infor-

mative Bayesian priors were used for MCMC, and

the study highlighted how prior information can be

incorporated to decrease uncertainty when using

MCMC. Mohn (2009) compared the delta method,

bootstrap, and MCMC, fitting an age-structured

model to cod data. The bootstrap generated consid-

erably wider confidence intervals than the delta

method and MCMC, and the author pointed out that

the bootstrap might be overestimating measure-

ment uncertainty.
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Fewer studies have used simulated data to

compare the performance of uncertainty methods.

Punt and Butterworth (1993) compared the delta

method and the bootstrap, using an age-structured

operating model and a simpler biomass-dynamic

assessment model. The methods worked equally

well, as long as some bootstrap pitfalls were avoided.

Restrepo et al. (2000) compared the delta method,

bootstrap, and MCMC, fitting age-structured assess-

ment models to a simulated dataset. The delta

method and bootstrap performed marginally better

than MCMC in their study, and bias-correction

methods proved beneficial.

This study

Overall, previous comparison studies have not

identified which uncertainty method performs best.

They have highlighted the strengths and weak-

nesses of each method and provided useful recom-

mendations regarding their implementation. This

study revisits the question with previous recom-

mendations in mind, using a modern statistical

catch-at-age model both to simulate and to analyze

data that are known to be informative (Magnusson

and Hilborn 2007). The study also benefits from

greater computing power than was available a

decade ago, allowing a more rigorous experimental

design that involves a larger number of simulated

datasets and population trajectories.

The working hypothesis is that all three methods

work perfectly, for example, that 90% confidence

intervals for a reference point contain the true value

90% of the time. This hypothesis is not going to be

accepted or rejected, but the delta method, boot-

strap, and MCMC will be rated in terms of how

accurate the probabilistic statement is.

Methods

First, we define a set of true population parameters

and generate stochastic datasets, using an operating

model based on age-structured population dynam-

ics. The performance of three uncertainty methods

is then evaluated, with respect to how accurately

they report the uncertainty about reference points.

The simulation procedure (Fig. 1) is repeated 1000

times, using 10 different recruitment scenarios so

the results do not depend on a particular population

trajectory. The operating model first outputs the

resulting reference point values, and then applies

random observation noise to the assessment data

that are used as input for the estimation model.

Finally, the confidence interval for each reference

point is evaluated using the delta method, bootstrap,

and MCMC, and compared with the ‘true’ reference

points.

Operating model

The operating model is age-structured and follows

the parametrization of the Coleraine generalized

population model (Hilborn et al. 2003). The popu-

lation dynamics of this operating model are

described in detail by Magnusson and Hilborn

(2007). There are 10 age classes, including a plus

group, and 20 years of data, nominally referred to

as 1985–2004, and the biology and fishery char-

acteristics (see Supporting Information, Figure S1,

Tables S1 and S2) are based on Atlantic cod (Gadus

morhua, Gadidae).

Each dataset includes landings, a survey abun-

dance index, commercial catch at age and survey

Operating
model

Estimation
model

Confidence
interval

Confidence
interval

Confidence
interval

10 × recruitment
   scenarios

100 × stochastic
datasets

True
reference

points

True parameter values
Harvest rate schedule
Recruitment scenario

Assessment data
with observation noise

1000 bootstrap
estimates

1000 MCMC
iterations

Point estimate and
delta-method SE

Figure 1 The simulation procedure. Arrows indicate the

process for a single run, and replications indicate how

the study consists of multiple runs.
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catch at age. The landings are assumed to be known

exactly, but the commercial and survey catch-at-

age data and the abundance index are subject to

random observation error. The datasets are based

on 10 recruitment scenarios that are generated

randomly (Table S3), and within each scenario

there are 100 stochastic datasets with different

realizations of observation noise. The level of

recruitment variability (lognormal rR = 0.6), obser-

vation noise for the abundance index (lognormal

rI = 0.2), and observation noise for the commercial

(multinomial Cn = 50) and survey catch-

at-age (multinomial Sn = 50) are similar to those

used in assessments of Icelandic cod (ICES 2003).

All the scenarios follow the same harvest rate

schedule, but the recruitment pattern leads to 10

different landings and biomass trajectories (Fig. 2).

The survey abundance index is proportional to

the biomass vulnerable to the survey in the middle

of the fishing year,

It ¼ q
X

a

SSaNt;awae�M=2 � expðIetÞ; ð1Þ

where It is the observed abundance index at time

t, q is the catchability coefficient, SSa is survey

selectivity at age a, Nt,a is population size, wa is body

weight, M is the natural mortality rate, and

Iet�N(0, rI) is observation noise. The commercial

catch-at-age data are provided to the assessment

model in the form of proportions at age. These

proportions are generated assuming that sampling

is multinomial,

CPt;a � Multinom Cn;
CSaNt;aP
a CSaNt;a

� ��
Cn; ð2Þ

where CPt,a is the observed catch at age and Cn is the

multinomial sample size. Survey catch-at-age data

are generated in the same way.

Estimation model

The estimation model is a statistical catch-at-age

model (Fournier and Archibald 1982) implemented

using Coleraine and has the same parametrization

as the operating model. It would therefore fit the

data perfectly, if it was not for the observation noise

both in the survey abundance index and in the

commercial and survey catch-at-age data. The

parametrization allows the commercial selectivity

curve to decline at the oldest ages, but the survey

selectivity curve is correctly assumed to be asymp-

totic. Some of the estimated parameters, including

natural mortality rate M, stock-recruitment steep-

ness h, and declining right-hand commercial selec-

tivity are known to be correlated and problematic to

estimate (Magnusson and Hilborn 2007). Wide

bounds (Table S2) are assigned to all estimated

parameters so as not to impose any major con-
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straints on the parameter values. The estimation

model is given the correct (i.e. operating model)

value for recruitment variability, rR = 0.6.

The objective function for the estimation model is

the sum of four components. The first three relate to

observed data, and the last component is a penalty

on deviations from Beverton-Holt recruitment. The

abundance index is assumed to be lognormally

distributed, the robust normal likelihood for propor-

tions (Fournier et al. 1990) is assumed for the

commercial and survey catch-at-age data, while the

recruitment deviates are assumed to be lognormal.

The magnitude of observation error for the abun-

dance index is estimated using maximum likelihood,

while the effective sample sizes for the commercial

and survey catch-at-age data are estimated using

the approach of McAllister and Ianelli (1997). The

same age-composition sample size is assumed for all

years, calculated as the median of estimated annual

effective sample sizes.

Reference points

Six reference points are evaluated as potential

management quantities of interest: Bcurrent (current

spawning biomass), ucurrent (current harvest rate),

Depletion (depletion level, Bcurrent relative to virgin

spawning biomass), maximum sustainable yield

(MSY), Bcurrent/BMSY (Bcurrent relative to BMSY) and

Surplus (current surplus production). These refer-

ence points describe the current stock status and

potential yield, and are described in detail by

Magnusson and Hilborn (2007). MSY and BMSY

are defined as the long-term average catch and

spawning biomass when the harvest rate is set to an

optimal value, uMSY. Surplus production is defined

as the last year’s catch, plus the resulting change in

vulnerable biomass.

The true reference point values from the operat-

ing model vary between recruitment scenarios

(Table 1), except ucurrent that is predefined (Fig. 2,

Table S3), and MSY that depends only on R0, h, M,

and commercial selectivity. The true MSY value is in

all cases 203 thousand t, with harvest rate

uMSY = 0.154 and spawning biomass BMSY = 1270

thousand t.

Evaluating uncertainty

The three methods used to quantify uncertainty

start with the same input, the simulated datasets.

Equation (3) summarizes how each method gener-

ates a probability distribution that is used to

construct confidence intervals,

y �!model

delta
ĥ;cSEĥ �!Norm

pðy j hÞ

y �!model
ĥ �!bootstrap

y�1; y�2; . . . ; y�B �!model ð3Þ

ĥ�1; ĥ
�
2; . . . ; ĥ�B �!density

biascorr
pðy j hÞ

y �!model

MCMC
h1; h2; . . . ; hT �!density

pðh j yÞ

where y denotes the observed data, h is a vector of

parameters (and derived quantities), the ^ symbol

indicates an estimate of a parameter or derived

quantity, cSEĥ is the estimated standard error of ĥ, y�b
is a bootstrap dataset, ĥ�b is a bootstrap estimate, and

ht is an MCMC iteration. The sampling distribution

pðyj hÞ and posterior distribution pðh jyÞ are used to

generate confidence intervals at any given confi-

dence level.

Delta method

The estimation model uses automatic differentiation

(Griewank and Corliss 1991; Fournier et al. 2012)

to evaluate the Hessian matrix and hence the

approximate variance–covariance matrix for the

Table 1 True reference point values from the operating model for each recruitment scenario. Bcurrent, MSY, and Surplus

are expressed in thousands of tonnes. ucurrent and MSY are 0.023 and 203, respectively, for all 10 recruitment scenarios.

Reference

point

Recruitment scenario

1 2 3 4 5 6 7 8 9 10

Bcurrent 1904 2156 1611 1793 2537 1318 1960 1704 1484 1802

Depletion 0.479 0.543 0.405 0.451 0.639 0.332 0.493 0.429 0.374 0.454

Bcurrent/BMSY 1.499 1.697 1.268 1.411 1.997 1.038 1.543 1.341 1.168 1.418

Surplus 83 315 158 164 166 198 245 300 84 227

MSY, maximum sustainable yield.
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estimated parameters. The delta method (Seber

1973), which assumes that both estimation bias

and the quadratic terms of the Taylor series are

negligible, is then used to estimate the variance of

each derived quantity,

cSEĝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

X
j

dCov ĥi; ĥj

� � @g

@hi

� �
@g

@hj

� �s
; ð4Þ

where g is a derived quantity, such as a reference

point, that is a function of some estimated param-

eters h1, h2,…, hn. The symmetric confidence

interval for g is then:

ĝ� za=2
cSEĝ; ĝþ za=2

cSEĝ

h i
; ð5Þ

The reference points Bcurrent and MSY are log-

transformed for the purpose of applying the delta

method, because the uncertainty about these quan-

tities can be expected to be closer to lognormal than

normal (Mohn 1993; Patterson et al. 2001), and

exploratory bootstrap and MCMC runs indicated

that this was the case. Although surplus production

is also measured in biomass units, it is not log-

transformed, as exploratory results showed fairly

symmetric distributions, and because surplus pro-

duction can be negative when weak cohorts are

entering the fishable stock.

Bootstrap

A parametric model-conditioned approach is used

to generate 1000 bootstrap datasets for each simu-

lated dataset. In their simulation study, Punt and

Butterworth (1993) found that 100 bootstrap data-

sets was adequate for variance estimation, but 1000

bootstrap datasets are used here, because more

replicates are needed to estimate quantiles than

variance. The bootstrap is parametric with residuals

sampled from estimated probability distributions,

and model-conditioned in that the residuals are

not applied to the observed data but to predictions

from the model fit to the original data (Efron and

Tibshirani 1993). The parametric bootstrap was

chosen because it is probably what would be used in

practice for this particular assessment model, as

there is no straightforward way to resample residu-

als for the catch-at-age data when they are propor-

tions. The bootstrap survey abundance index is

I�t ¼ Ît � expðIe�t Þ; Ie
�
t � Nð0; r̂2

I Þ; ð6Þ

where I�t is the bootstrap datum for year t, Ît is the

predicted index for year t from the model fit to the

original dataset, Ie�t are bootstrap residuals, and r̂I is

the estimated magnitude of observation error. The

bootstrap commercial catch at age is

CP�t;a � Multinom Cn̂; CP̂t;a

� 	

Cn̂; ð7Þ

where CP�t;a are the bootstrap data, Cn̂ is the

estimated effective sample size, and CP̂t;a is the

model-predicted commercial catch at age for year t.

The estimation model is fitted to each of the 1000

bootstrap datasets, resulting in 1000 bootstrap

estimates for each parameter and derived quantity.

A bias-correction factor is then applied, which has

been shown to lead to more accurate confidence

intervals (Efron 2003). In fisheries stock assessment,

Gavaris and Van Eeckhaute (1998) and others have

used the BCa algorithm (bias correction and accel-

eration, Efron and Tibshirani 1993) with the

acceleration coefficient set to zero. Acceleration

relates to the rate of change of the standard error of

ĥ with respect to the true parameter value h, so zero

acceleration implies that the standard error of ĥ is

the same for all h. The algorithm then simplifies to

BC
~̂h
� ¼ X̂�1 U 2U�1½X̂ðĥÞ� þ U�1ð~aÞ

� �h i
; ð8Þ

where BC
~̂h
�

is a vector of bias-corrected bootstrap

estimates in ascending order, F( Æ ) is the standard

normal cumulative distribution function,

X̂ðxÞ ¼ #fĥ�<xg=B is the empirical cumulative

distribution function of the bootstrap estimates ĥ�,
while F)1( Æ ) and X̂�1ð�Þ are the corresponding

inverse functions, B is the number of bootstraps, and

~a is a vector of probability levels 1/B, 2/B, …, B/B.

The bias-correction algorithm compares the boot-

strap estimates of a given quantity to the original

point estimate. If the median of the bootstrap

estimates is above or below the original point

estimate, it is seen as an indication of a biased

estimator. As the original point estimate was subject

to the same bias, the algorithm corrects for the bias

by transforming the bootstrap estimates (Fig. 3).

The algorithm performs no transformation if the

median of the bootstrap estimates is the same as the

original point estimate. It is also worth noting that

the bias-corrected bootstrap estimates are always

within the range of the ‘raw’ bootstrap estimates.

The resulting confidence interval may be narrower

or wider.

The algorithm fails in the rare case when the bias

is so extreme that all the bootstrap estimates are

above or below the original point estimate. In these

cases, the X̂ðĥÞ term, the proportion of bootstrap

Uncertainty in stock assessment A Magnusson et al.
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estimates that are below the original point estimate,

is 0 or 1, resulting in expressions such as

X̂�1 U �1þ1ð Þ½ �, which is not mathematically

defined. To avoid this problem, a robust algorithm

is used, where the X̂ðĥÞ term is bounded between

0.1 and 0.9:

BC
~̂h
� ¼ X̂�1

h
U
�

2U�1½maxf0:1;

minf0:9; X̂ðĥggÞ� þ U�1ð~aÞ
�i
:

ð9Þ

These safety bounds guarantee a valid interval,

but without the safety bounds, 5 of 6000 bias-

corrected bootstrap intervals were undefined. The

bias demonstrated in Fig. 3 corresponds to

X̂ðĥÞ ¼ 0:84, so the safety bounds at 0.1 and 0.9

are irrelevant for that example. The computer code

for the robust bias-correction algorithm is provided

in Appendix 1. The bias-corrected bootstrap con-

fidence interval is calculated as:

a
2

quantile from BC
~̂h
�
; 1 � a

2

� �
quantile from BC

~̂h
�h i
:

ð10Þ

MCMC

Markov chain Monte Carlo simulation is used to

approximate the posterior distribution of estimated

parameters and reference points. The simulation

method is Metropolis-Hastings with an adaptive

multivariate normal jumping distribution (Gelman

et al. 2004; Fournier et al. 2012).

All model parameters are assigned uniform priors

based on their bounds (Table S2), except the devi-

ations about Beverton-Holt stock-recruitment rela-

tionship have a lognormal prior. The MCMC

simulation is run for 1 million iterations and then

thinned, keeping every 1000th iteration. Conver-

gence of the estimated reference points is diagnosed

using the coda package (Plummer et al. 2006),

adopting an autocorrelation threshold of 0.1, Gew-

eke threshold of 1.96, and Heidelberger-Welch

threshold of 0.05. If any criteria are not met, the

MCMC chain is extended to a maximum of 10

million iterations, still thinning to 1000 iterations,

to reduce autocorrelation and stabilize the distribu-

tion quantiles. This proved to be necessary for a few

hundred model runs, owing to unstable model

convergence as can be expected when simulta-

neously estimating correlated parameters such as

natural mortality rate M, stock-recruitment steep-

ness h, and declining right-hand selectivity (Mag-

nusson and Hilborn 2007).

The MCMC confidence interval is calculated as

a
2

quantile from h1; h2; . . . ; hT ; 1� a
2

� �h
quantile from h1; h2; . . . ; hT

i
;

ð11Þ

where h1, h2, …, hT are the iterations retained

from the MCMC chain.

Results

We first examine the performance of confidence

intervals at the 90% confidence level, then broaden

the analysis to all confidence levels, and finally

examine the sensitivity of the results to changes to

assumptions. Results are shown for both bias-

corrected and ‘raw’ (non-bias-corrected) bootstrap

confidence intervals to evaluate whether and how

much the bias correction improves the bootstrap

performance.

90% confidence level

A total of 24 000 confidence intervals are analyzed

at the 90% confidence level (four uncertainty

methods, six reference points, 10 recruitment sce-

narios, and 100 stochastic datasets for each recruit-

ment scenario). Before summarizing, it is useful to
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Figure 3 Effect of bias correction on bootstrap estimates.

In this hypothetical example, the bootstrap estimates (left

boxplot) are lower than the point estimate from the

original data (horizontal line). The resulting bias-corrected

bootstrap estimates (right boxplot) take into account that

the original point estimate was subject to the same bias.
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look at an example set of confidence intervals

(Fig. 4), where the uncertainty method is MCMC,

the reference point is current surplus production,

and the recruitment scenario is 10. For a 90%

confidence level, one would expect around 90% of

the confidence intervals to cover the true value (227

thousand t), so the coverage probability in this

example, 93 of 100, is slightly higher than the

nominal value of 90.

Looking across all uncertainty methods, reference

points, and recruitment scenarios, the coverage

probability is usually lower than the target

(Table 2), with 216 of 240 combinations having

coverage probabilities below 90. The example

described previously, with a coverage probability

of 93, can be found in the lower right-hand corner

of Table 2. The coverage probabilities vary consid-

erably between recruitment scenarios and the

purpose of including ten scenarios instead of only

one is to prevent the results from depending on a

particular recruitment history.

The overall trends emerge after averaging over

recruitment scenarios (Table 3), with the delta

method, bootstrap, and MCMC all showing cover-

age probabilities <90, that is, the methods lead to

90% confidence intervals that cover the true value

<90% of the time. Overall, the delta method and

MCMC perform better than the bias-corrected

bootstrap, with mean coverage probabilities of

73.0, 72.5 and 64.1, respectively. The performance

of the bootstrap is considerably poorer before bias

correction, with a mean coverage probability of

57.4. The delta method outperforms the other

methods in evaluating the uncertainty about the

current biomass, current harvest rate, depletion,

and surplus production, but performs poorly for

Bcurrent/BMSY. MCMC performs better than the delta

method and bootstrap for MSY and Bcurrent/BMSY,

and its mean coverage probability is above 60 for

all reference points. The bias-corrected bootstrap

has similar or lower coverage probabilities than the

delta method and MCMC, including a particularly

low coverage probability of 45.6 for MSY. Bias

correction generally improves the bootstrap perfor-

mance, although it reduces the coverage probabil-

ity from 71.2 to 65.6 for Bcurrent/BMSY. On the

other hand, bias correction leads to a substantial

increase in coverage probability for current harvest

rate, from 44.9 to 66.5.

All confidence levels

When the analysis is repeated for different confi-

dence levels (Fig. 5, Table S4), the results confirm

the trends for the 90% confidence level. The delta

method, bootstrap, and MCMC show coverage

probabilities that are consistently lower than

expected at all confidence levels. The general

pattern is that the delta method and MCMC

perform better than the bootstrap, the main

exception being Bcurrent/BMSY, where the delta

method performs considerably worse than MCMC
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Figure 4 Example results, showing 90% confidence intervals for surplus production, from Markov chain Monte Carlo

analysis of 100 stochastic datasets for recruitment scenario 10. Seven confidence intervals (thick lines) of one hundred

do not cover the true value (horizontal line). In this example, the coverage probability is 93.
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and the bootstrap. The delta method performs

slightly better than MCMC for current biomass,

current harvest rate, and depletion at confidence

levels higher than 50%, but the two methods

perform equally well for MSY and surplus produc-

tion. On the whole, the bias-corrected bootstrap

performs poorer than the delta method and MCMC,

particularly for MSY. Bias correction leads to

improved performance of the bootstrap, with the

exception of Bcurrent/BMSY, and the improvement is

especially noticeable for current harvest rate.

MCMC has the most consistent performance for

the various reference points (Fig. 5). Its coverage

probability is always close to that for the best-

performing method, and it shows no conspicuous

failures, unlike the bootstrap for MSY and the delta

method for Bcurrent/BMSY.

Table 2 Coverage probability for 90% confidence intervals for each uncertainty method, reference point, and recruitment

scenario. The non-bias-corrected bootstrap is referred to as ‘raw’ and bias-corrected bootstrap as ‘bootstrap’. Ideally, the

coverage probability at this confidence level should be 90.

Method

Reference

point

Recruitment scenario

1 2 3 4 5 6 7 8 9 10

Delta Bcurrent 80 70 75 77 73 80 78 70 72 72

ucurrent 78 71 73 74 68 78 73 70 71 71

Depletion 79 54 66 74 77 79 67 83 70 80

MSY 72 19 100 96 94 99 61 99 100 87

Bcurrent/BMSY 37 54 51 47 42 50 63 39 57 44

Surplus 70 95 90 86 81 94 89 93 71 94

Raw Bcurrent 71 45 65 58 57 78 42 59 49 61

ucurrent 52 28 53 44 46 71 18 52 36 49

Depletion 61 17 46 58 62 79 5 76 50 68

MSY 20 1 49 47 28 100 6 98 78 37

Bcurrent/BMSY 85 62 49 75 72 70 78 73 65 83

Surplus 44 94 82 67 67 86 75 83 20 96

Bootstrap Bcurrent 62 66 66 66 61 68 74 69 61 57

ucurrent 65 65 69 72 60 78 62 77 59 58

Depletion 67 63 71 73 64 69 39 71 73 59

MSY 30 6 73 56 42 58 27 76 59 29

Bcurrent/BMSY 61 71 74 66 63 63 56 57 87 58

Surplus 68 77 81 78 70 80 79 85 67 83

MCMC Bcurrent 66 72 61 71 66 69 68 66 69 69

ucurrent 63 64 55 66 59 67 66 62 65 63

Depletion 73 72 66 74 71 64 53 61 71 83

MSY 81 30 89 98 79 98 78 93 99 87

Bcurrent/BMSY 70 84 66 78 62 53 76 36 74 73

Surplus 75 94 90 88 78 90 85 91 66 93

MCMC, Markov chain Monte Carlo; MSY, maximum sustainable yield.

Table 3 Coverage probability for 90% confidence inter-

vals for each uncertainty method and reference point,

averaged across recruitment scenarios. The non-bias-

corrected bootstrap is referred to as ‘raw’ and bias-

corrected bootstrap as ‘bootstrap’. Ideally, the coverage

probability at this confidence level should be 90.

Delta Raw Bootstrap MCMC

Bcurrent 74.7 58.5 65.0 67.7

ucurrent 72.7 44.9 66.5 63.0

Depletion 72.9 52.2 64.9 68.8

MSY 82.7 46.4 45.6 83.2

Bcurrent/BMSY 48.4 71.2 65.6 67.2

Surplus 86.3 71.4 76.8 85.0

Average 73.0 57.4 64.1 72.5

MCMC,MarkovchainMonteCarlo;MSY,maximumsustainableyield.
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When the results are averaged across the six

reference points (Fig. 6), the delta method and

MCMC show similar performance, substantially

better than the bias-corrected bootstrap. At the

50% confidence level, MCMC has a mean coverage

probability of 38, the delta method has 35 and the

bootstrap 30. At the 95% confidence level, the delta

method and MCMC have a mean coverage proba-

bility of 80, while the bootstrap has 71 (Fig. 6,

Table S4).

Sensitivity analysis

Four analyses are used to examine what factors may

lead to the low coverage probabilities (Fig. 6). The

first analysis assumes that the estimation method

‘knows’ the true magnitude of observation error, the

second analysis uses a multinomial catch-at-age

likelihood, the third assumes that the estimation

method ‘knows’ the bias of estimated reference

points, and the fourth combines all of the above.
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Figure 5 Coverage probability for confidence intervals by uncertainty method and reference point, evaluated at several

confidence levels (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 99%).
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Figure 6 Coverage probability for confidence intervals for

each uncertainty method averaged across all six reference

points, evaluated at several confidence levels (0, 10, 20,

30, 40, 50, 60, 70, 80, 90 and 99%).
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These analyses are only conducted for the delta

method owing to computational demands. Finally, a

supplementary sensitivity analysis (Table S5) indi-

cates that the overall results would not change very

much if more recruitment scenarios would be

included in the study.

Known magnitude of observation error

The observation noise in the simulated datasets is

generated using lognormal rI = 0.2 and multi-

nomial Cn = 50 and Sn = 50, but this magnitude

of observation error is often underestimated by the

estimation model. The iteratively estimated r̂I is

often too low, the median estimate being 0.186,

while Cn̂ and Sn̂ are often too high, with median

estimates 52 and 53. This leads to narrower

confidence intervals, which could explain the low

coverage probabilities. When the estimation model

uses the true values for rI, Cn and Sn, the coverage

probability of the delta method improves only

marginally, from 72.9 to 74.5 at the 90% confi-

dence level (Fig. 7, left panel).

Multinomial catch-at-age likelihood

The operating model generates catch-at-age data

under the assumption of multinomial sampling, but

the estimation model uses the Fournier robust

normal likelihood for proportions. This introduces

a model misspecification, which could explain the

low coverage probabilities. When the estimation

model assumes a multinomial catch-at-age likeli-

hood instead of the robust normal likelihood for

proportions, the coverage probability of the delta

method improves noticeably, from 72.9 to 78.4 at

the 90% confidence level (Fig. 7, center panel).

Known bias

Each reference point is estimated with some bias.

The median of the 1000 point estimates compared

with the true value, median ðĥ� hÞ=h, is )0.13 for

current biomass, +0.22 for current harvest rate,

)0.20 for current depletion level, +0.20 for MSY,

+0.05 for Bcurrent/BMSY, and +0.14 for current

surplus production. When the delta-method confi-

dence intervals are shifted to correct for the median

bias of each reference point, the coverage probabil-

ity improves noticeably, from 72.9 to 78.8 at the

90% confidence level (Fig. 7, right panel).

Combined effect

When the estimation model assumes a multinomial

catch-at-age likelihood, given the true values for rI,

Cn and Sn, and the confidence intervals are then

shifted to correct for the median bias of each

reference point, the coverage probability improves

considerably, from 72.9 to 82.6 at the 90%

confidence level.

Discussion

Confidence intervals are too narrow

The delta method, bootstrap, and MCMC all pro-

duced confidence intervals that did not cover the

true value as often as the nominal confidence level

implies (Fig. 6). The three methods are well estab-

lished in the statistical literature, widely used, and

have been shown to perform well for simple models,

when all assumptions are met (Seber 1973; Efron

and Tibshirani 1993; Gelman et al. 2004). The

purpose of this study was to examine how well they
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Figure 7 Coverage probabilities for the sensitivity tests. White triangles indicate the base case delta method (same as

Fig. 6), and black triangles indicate the outcomes of each sensitivity test.
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perform with a typical stock assessment model of

medium complexity, when most assumptions are

met. Generally, the performance of all statistical

methods degrades with increased model complexity,

as non-linearity and correlated parameter estimates

undermine the assumptions and lead to estimation

bias (Seber and Wild 1989). The optimization

method also becomes less likely to find the global

minimum. In this study, sensitivity analysis showed

that even after correcting for estimation bias, the

delta-method 90% confidence intervals still covered

the true value <80% of the time.

The expectation was that the methods would

show some inaccuracy, because of model complex-

ity, but not necessarily that the confidence intervals

would be too narrow. It would seem, a priori, just as

possible that some of the methods might generate

confidence intervals that covered the true value

more often than the nominal confidence level

implies.

This study is based on a scenario that is known to

be informative (Magnusson and Hilborn 2007),

where the stock is first fished down and then

allowed to rebuild (Fig. 2), with standardized

surveys and age data from the start of the fishery.

Furthermore, the data are generated using the same

dynamics as the estimation model, and landings,

body weight, maturity, and recruitment variability

are known without error. When analyzing real

data, we can expect model error and process

variability to lead to considerably more bias, and

therefore, confidence intervals that are even less

likely to cover the true value. The notion that

statistical methods in stock assessment tend to

underestimate the real extent of uncertainty is

reflected in the literature (Hilborn and Mangel

1997; Punt and Hilborn 1997; Patterson et al.

2001; Gavaris and Ianelli 2002) and demonstrated

here in a setting where one would expect the

methods to perform well. In a recent meta-analysis

of multiple assessment models fitted to 17 stocks off

the United States West Coast, Ralston et al. (2011)

found that model specification error can be expected

to be considerably greater than the estimation error.

Delta method and MCMC perform better than

bootstrap

The delta method and MCMC provided better

confidence intervals than the bootstrap on average

(Fig. 6). For example, at the 90% confidence level,

the delta-method intervals covered the true refer-

ence point value 73.0% of the time, MCMC 72.5%

and bias-corrected bootstrap 64.1%. Although the

intervals from all three methods were generally too

narrow, the delta method and MCMC were consid-

erably closer to attaining the nominal confidence

level.

It is somewhat surprising to see how well the

delta method performed, compared with the

bootstrap and MCMC. Automatic differentiation

(Griewank and Corliss 1991; Fournier et al. 2012)

facilitates the use of the delta method with complex

models, where derived quantities are not simple

functions of estimated parameters, by applying

automated algorithms to compute the partial deriv-

atives. In application, the delta method is orders of

magnitude faster than the computationally inten-

sive bootstrap and MCMC methods, which can be a

major advantage for iterative simulations, complex

models, and/or large datasets (Maunder et al.

2009).

The delta method has been shown to perform

about as well as the bootstrap for stock assessment

(Punt and Butterworth 1993; Restrepo et al. 2000),

or slightly worse (Mohn 1993; Gavaris 1999). A

simulation study comparing the delta method,

bootstrap, and MCMC (Restrepo et al. 2000) found

that the delta method and bootstrap performed

about as well, but MCMC performed poorer. The

present study’s ranking of the uncertainty methods

is therefore quite different from the results of

previous simulation studies. The contradictory

results are most likely due to model differences;

the previous studies used relatively simple biomass-

dynamic models and ADAPT, with fewer estimated

parameters, fewer objective function components,

and more restrictive assumptions than the statistical

catch-at-age model used here. Variations in the

implementation of the delta method, bootstrap and

MCMC can also affect their performance (Patterson

et al. 2001; Gelman et al. 2004; Givens and Hoeting

2005). Finally, the studies vary in terms of whether

they compare confidence intervals or variance

estimates, and whether they focus on the

uncertainty about model parameters or reference

points.

Bias correction improves bootstrap performance

Overall, the bootstrap performed considerably better

with bias correction than without it (Fig. 6), with

the mean coverage probability at the 90%

confidence level increasing from 57.4 to 64.1. This
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shift of 6.7, compared with a shift of 32.6 that

would bring it to ideal performance, amounts to

around 20% improvement. This performance

improvement did not, however, apply uniformly

across all reference points (Fig. 5), ranging from

particularly beneficial for current harvest rate and

depletion, to slightly detrimental for MSY and

Bcurrent/BMSY.

The estimation of current harvest rate was

subject to greater bias than the other reference

points. It is therefore reassuring to see that bias

correction was most beneficial for that reference

point, effectively correcting for the positive bias. It is

also reassuring to see a similar performance gain for

negatively biased reference points, such as current

depletion. When bias correction does not lead to

improved performance, it is because the perceived

bias, that is, the difference between the bootstrap

estimates and the point estimate, does not reflect the

true estimation bias.

This study evaluates the performance of the BCa

bias-correction method for the bootstrap using zero

acceleration. Alternative approaches include ABC

(approximate bootstrap confidence), ABCq, and

various ways to estimate the BCa acceleration

coefficient (Efron and Tibshirani 1993). The

implementation used here is recommended in the

current fisheries stock assessment literature (Patt-

erson et al. 2001; Gavaris and Ianelli 2002), and

the results from this study support that recommen-

dation.

Other findings

Why did the bootstrap perform so poorly for MSY?

This reference point was positively biased, mainly

due to a positive bias in the estimated

stock-recruitment steepness parameter h. This bias

can be expected in statistical catch-at-age models

when the stock-recruitment steepness is estimated,

unless the data include years of extremely low

abundance, and the natural mortality rate and

selectivity of older fish are known (Magnusson and

Hilborn 2007; Conn et al. 2010). Despite this bias,

the delta method and MCMC performed very well

for MSY, providing confidence intervals of

appropriate width at any given confidence level

(Fig. 5).

The delta method showed unusually low cover-

age probability for Bcurrent/BMSY, compared with

the other reference points. The most likely reason

for this is that the assumption of symmetric

Gaussian uncertainty is not appropriate for this

ratio statistic. There are many transformations that

could be used for each reference point, and it is

beyond the scope of this study to explore all

possibilities. Logarithm and square-root transfor-

mation are ruled out if the original quantity can be

negative, such as, surplus production, as are logit

and probit transformation when the quantity can

exceed 1.0, such as depletion level and Bcurrent/

BMSY. Transforming reference points has an impor-

tant effect on the performance of the delta method,

but transforming model parameters can improve

the performance of the bootstrap and MCMC as well

(Efron and Tibshirani 1993; Gelman et al. 2004).

The use of statistical transformations in stock

assessment models is a topic worthy of further

investigations.

The sensitivity analysis showed that the estima-

tion model performed noticeably better when multi-

nomial likelihood was used for catch at age, instead

of the default Fournier robust normal likelihood for

proportions. As the operating model uses multi-

nomial random draws to generate the catch at age

data, this sensitivity test quantifies the model error

introduced by likelihood misspecification. The Four-

nier likelihood is designed to be more robust than

the multinomial likelihood when observed data are

subject to greater variability than statistical theory

predicts (Fournier et al. 1990) and has been shown

to perform well when that is the case (Ernst 2002).

This study, on the other hand, shows that the

Fournier likelihood does not perform as well as the

multinomial likelihood when the data are random

draws from the multinomial distribution. The

Fournier likelihood is not a generalization of the

multinomial that allows greater variance, but

rather a hybrid between normal and multinomial

that explicitly downweights two kinds of outliers:

ages with few observations and predictions that are

far from the observations. We recommend using the

Fournier likelihood to analyze real fisheries data,

and use it in this study to represent a typical

estimation model in stock assessment.

The additional analyses also examined the

impact of biased reference points, and how much

of the total error is because of bias, as opposed to

too narrow confidence intervals. Magnusson and

Hilborn (2007) described what kinds of biases can

be expected when estimating reference points,

depending on the fishing history, model assump-

tions, and available data. As the fishing history and

estimation model analyzed here were selected from
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that study, the biases were known beforehand.

When these biases were corrected for each refer-

ence point, the performance of the delta method

improved about one-third towards ideal perfor-

mance. When analyzing real fisheries data, the

total error cannot be partitioned in this way,

because bias can only be evaluated when the true

value is known.

Recommendations

The overall performance trends suggest that MCMC

is the most reliable of the three uncertainty meth-

ods, given the dataset and catch-at-age assessment

method. Both the delta method and the bootstrap

performed poorly for one or more reference points,

while MCMC was always close to the best-perform-

ing method. When time and resources allow, we

recommend using more than one method to eval-

uate uncertainty, to see whether they lead to

markedly different conclusions. If only one method

is to be used, it seems that MCMC is the least likely

to severely misrepresent uncertainty. All three

methods, however, have a strong tendency to

underestimate the uncertainty.

On the average, the delta method performed well

compared with the computationally intensive boot-

strap and MCMC methods and can be recommended

for quick evaluation of uncertainty while exploring

a variety of modelling options, before applying the

bootstrap and/or MCMC to selected model runs. The

delta method may also be useful when confidence

intervals are required in a large number of simula-

tions. In this study, the delta-method calculations

were around 1000 times faster than the bootstrap

and MCMC. Management strategy evaluation (But-

terworth and Punt 1999; De Oliveira et al. 2008) is

a common application where this can be relevant.

Possible transformations of model parameters and

reference points should be explored when using the

delta method.

One advantage of the bootstrap is that it can

detect bias in the estimation model, thus providing

valuable diagnostic information for the modeller

(Haddon 2003). We recommend applying bias

correction when using the bootstrap, having seen

around 20% overall performance improvement in

this study. That said, the bootstrap was generally

outperformed by the delta method and MCMC, in

spite of bias. It would be interesting to see a similar

performance comparison of uncertainty methods

where the estimators are more biased than here.

Another potential advantage of the bootstrap is that

computations can be split into parallel threads, thus

taking less time than computing a very long MCMC

chain.

Each method for evaluating uncertainty is based

on a particular set of assumptions. It appears that

the choice between frequentist methods, such as the

delta method and bootstrap, and Bayesian methods,

such as MCMC, is not the most important decision

for the modeller. In this study, for example, the

overall performance of the delta method and MCMC

was more similar than that of the bootstrap. It is at

least as important that the modeller considers, and

preferably tests, the sensitivity of the results to

specific assumptions within a method. The effects of

different transformations for the delta method have

been discussed earlier, and Patterson et al. (2001)

describe several bias-correction methods. Choices

within the bootstrap include parametric vs. non-

parametric, model-conditioned vs. non-conditioned,

and a variety of bias-correction methods (Efron and

Tibshirani 1993). In Bayesian inference, the choice

of prior distributions can be important, and different

algorithms to approximate the posterior probability

have their strengths and weaknesses (Gelman et al.

2004). The same estimation model can often be

expressed as frequentist or Bayesian with few or no

modifications, as is done in this study. The trend in

the current statistical literature (e.g. Kass 2011) has

been to deflate the frequentist-Bayesian debate,

focusing instead on the assumptions that relate

models to data. When frequentist and Bayesian

procedures does lead to very different conclusions,

the choice should primarily be based on their

performance with simulated data.

Although we have limited the analysis to the

delta method, bootstrap, and MCMC, other methods

can also be used to evaluate uncertainty in stock

assessment. Sampling-importance resampling (SIR)

can be used to simulate Bayesian posterior distri-

butions instead of MCMC, but both methods should

lead to the same distribution if run long enough

(Gelman et al. 2004). When stock assessment mod-

els include more than a dozen parameters, MCMC is

more computationally efficient than SIR (McAllister

et al. 1994; Punt and Hilborn 1997). Profile likeli-

hood (Edwards 1992; Hilborn and Mangel 1997) is

a straightforward method to evaluate the uncer-

tainty about estimated parameters, but it is prob-

lematic to generate the profile likelihoods for derived

quantities such as reference points and future

projections. Finally, adjunct Monte Carlo can be
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used to diagnose the consequences of changing the

value of a fixed parameter, such as natural mortal-

ity rate or the shape of a stock-recruitment function

(Patterson et al. 2001).

The main limitation of a study such as this one

is that the conclusions are based on one particular

estimation model and one artificial suite of data.

Our goal in the experimental design was to use a

typical stock assessment model of medium com-

plexity, with generic groundfish data scenarios that

are known to be rather informative (Magnusson

and Hilborn 2007). Many stock assessments use

simpler or more complex models that are concep-

tually and analytically related to the statistical

catch-at-age model used here. In cases where the

data and models are fundamentally different from

what we used, perhaps involving species interac-

tion or migration between areas, we can recom-

mend using this study’s simulation framework to

investigate the performance of candidate uncer-

tainty methods.
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Appendix 1

Bootstrap bias correction

The following R function was implemented for this study to apply BCa bootstrap bias correction with zero

acceleration, robust to extremely biased cases (Equation 9).

Supporting Information

Additional Supporting Information may be found in

the online version of this article:

Figure S1. Age-specific characteristics of the

operating model: survey selectivity, commercial

selectivity, maturity, and weight.

Table S1. Age-specific weight (kg) and maturity

(proportion) used in the operating and estimation

model.

Table S2. Parameter values used in the operat-

ing model, along with bounds used in the estimation

model.

Table S3. Annual harvest rate and recruitment

used in the operating model.

Table S4. Coverage probability for confidence

intervals by uncertainty method and reference

point, evaluated at several confidence levels.

Table S5. Coverage probability for 90% confi-

dence intervals, when the computations are re-

peated while leaving out one recruitment scenario

at a time.
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materials supplied by the authors. Any queries

(other than missing material) should be directed to

the corresponding author for the article.

BCboot <- function(thetastar, thetahat, bounds=c(0.1,0.9))
################################################################################
###                                                                            #
### Function: BCboot                                                           #
### #
### Purpose:  Apply bias correction to bootstrap estimates                     #
###                                                                            #
### Args:     thetastar is a vector of bootstrap estimates                     #
###           thetahat is a point estimate from original data                  #
###           bounds is a vector of lower and upper limits to handle extremely #
###             biased cases                 #
###                                                                            #
### Notes:    BCa with zero acceleration                                       #
###           Based on bcanon() in package 'bootstrap' by Tibshirani #
###           See Efron and Tibshirani (1993, pp. 184-186), Gavaris and Van    #
###             Eeckhaute (1998, p.10), Gavaris (1999, p. 47)                  #
###                                                                    #
### Returns:  Vector of bias-corrected bootstrap estimates                     #
###                                                                            #
################################################################################
{

B <- length(thetastar)
alpha <- (1:B) / B
lower <- bounds[1]
upper <- bounds[2]

z0 <- qnorm(max(lower, min(upper, sum(thetastar<thetahat)/B)))
zalpha <- qnorm(alpha)
newalpha <- pnorm(2*z0 + zalpha)
Omegainv <- approx(alpha, sort(thetastar), newalpha, rule=2)$y
bias.corrected <- Omegainv[rank(thetastar)]

return(bias.corrected)
}
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