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Abstract

 

A variety of  tools are available to quantify uncertainty in age-structured fish stock
assessments and in management forecasts. These tools are based on particular choices
for the underlying population dynamics model, the aspects of  the assessment con-
sidered uncertain, and the approach for assessing uncertainty (Bayes, frequentist or
likelihood). The current state of  the art is advancing rapidly as a consequence of  the
availability of  increased computational power, but there remains little consistency in
the choices made for assessments and forecasts. This can be explained by several fac-
tors including the specifics of  the species under consideration, the purpose for which
the analysis is conducted and the institutional framework within which the methods
are developed and used, including the availability and customary usage of  software
tools. Little testing of  either the methods or their assumptions has yet been done. Thus,
it is not possible to argue either that the methods perform well or perform poorly or that
any particular conditioning choices are more appropriate in general terms than others.
Despite much recent progress, fisheries science has yet to identify a means for identify-
ing appropriate conditioning choices such that the probability distributions which are
calculated for management purposes do adequately represent the probabilities of  even-
tual real outcomes. Therefore, we conclude that increased focus should be placed on
testing and carefully examining the choices made when conducting these analyses,
and that more attention must be given to examining the sensitivity to alternative
assumptions and model structures. Provision of  advice concerning uncertainty in
stock assessments should include consideration of  such sensitivities, and should use
model-averaging methods, decision tables or management procedure simulations in
cases where advice is strongly sensitive to model assumptions. 
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Introduction

 

The requirement for scientists to provide informa-
tion to managers on uncertainty about stock assess-
ments and forecasts arises in part from Article 7.5 of
the FAO code of  conduct for Responsible Fisheries
(Anonymous 1995) which includes the commitment:
“States should apply the precautionary approach
widely to conservation, management and exploita-
tion of  living resources.… In implementing the
precautionary approach, States should take into
account, 

 

inter alia

 

, uncertainties relating to the size
and productivity of  the stocks, reference points, stock
condition in relation to such reference points, levels
and distribution of  fishing mortality and the impact
of  fishing mortalities …”. A similar phrasing can be
found in Article 5(c) of  the UN agreement on the

Conservation and Management of  Straddling Stocks
(Anonymous 1994a; Sainsbury 

 

et al

 

. 2000).
Partly on account of  national commitments to

these agreements, consideration of  uncertainty has
become an important part of  the fisheries manage-
ment decision process in regard to assessments of  the
current state of  fishery resources as well as for short-,
medium- and long-term forecasts. Usually there is a
desire to know the probability of  certain events, such
as obtaining a low spawning-stock size. Furthermore,
there is a growing public awareness that fish stock
assessments and forecasts are not precise. Managers
and stakeholders need to understand the nature and
implications of  uncertainty so that appropriate decisions
are made. Treating assessments as exact can lead to
management actions that are driven by error and
natural variability rather than by new information.
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Provision of  fisheries advice in a form in which
uncertainty is explicitly recognised and quantified is
therefore becoming a standard requirement from
management agencies. Scientists have developed a
gallimaufry of  recondite statistical techniques to
identify the most important uncertainties and to
evaluate their impacts for management purposes in
response to this need.

These techniques have developed more or less
independently over the last decade or so, and we con-
tend that it is now appropriate to examine the present
state of  the art. This is particularly the case because
methods considered computationally unfeasible in
the past (such as Bayesian analysis and bootstrap)
are increasingly now part of  routine practice given
the availability of  computers of  sufficient power.

To examine the state of  the art of  uncertainty
estimation, we draw from our own experiences from
several specific applications where attempts have
been made to characterise uncertainty in fisheries
stock assessment results. Based on an analysis of
similarities and differences in these applications we
draw out the key considerations for quantifying
uncertainty. We first outline the management pur-
poses for which uncertainty estimation is needed.
This is followed by a review of  the issues for which
choices need to be made when estimating uncertainty
in age-structured assessments and forecasting. These
are classified according to structural model, error
model and inference paradigm with associated estima-
tion methods. We distinguish quantities or parameters
having values of  direct concern for management
purposes (parameters of  interest, typically spawning
biomass or fishing mortality) from other parameters
which describe processes not usually amenable to
management (e.g. catchability or recruitment vari-
ability). For clarity, we introduce some definitions:

 

•

 

By ‘structural model’, we refer to the set of  deter-
ministic relationships that are used to represent
reality.

 

•

 

By ‘error models’, we refer to the statistical
descriptions that are used to describe the variabil-
ity of  observations of  quantities that are governed
by the structural model, to statistical descriptions
of  prior belief  about model parameters, and to
statistical descriptions of  some highly variable and
unpredictable processes.

 

•

 

By ‘inference paradigm’, we refer to the set of
assumptions upon which rests the translation from
the data, structural model and error models to an
estimate of  uncertainty in a quantity of  interest.

We stress the assumptions underlying the various
statistical estimation methods rather than the
technical detail. We reference both published case-
studies and additional cases drawn from the ‘grey’
literature but which have in the most part served as a
basis for management decisions. Here, we consider only
examples of  methods that model the age-structure of
the population, but many of  the considerations also
apply to other approaches such as surplus-production
modelling (e.g. Butterworth and Andrew 1984; Punt
and Hilborn 1996).

Finally, and based on the foregoing review, we
present our opinions about the state of  the art of
quantifying uncertainty in fisheries, and the com-
parative advantages and disadvantages of  various
approaches. As this is an evolving field in which little
detailed work comparing alternative methods has been
conducted, we acknowledge that many of  our remarks
are speculative and encourage other practitioners to
challenge them and hence advance the field.

 

Management purposes

 

Stock assessment results can be used to support both
decisions involving the establishment of  strategies
in the medium or long term, and the determination
of  the appropriate short-term tactics to conform
to such strategies. Short-term tactics are usually
measures that are implemented when a substantive
new piece of  information is obtained about a stock,
e.g. a new estimate of  stock size. Long-term strategies
identify the desired state of  the fisheries system.
Medium-term strategies identify a means for altering
the state of  a fisheries system from its present state
towards the desired state over a chosen time period.
The design of  a fisheries stock assessment model and,
if  required, a corresponding forecast is inescapably
influenced by the nature of  the decision which it will
be used to support.

 

Establishing strategies

 

A topic closely related to estimating uncertainty is
the design of  management systems that are robust
to the levels of  uncertainty that are either measured
or are believed to exist in fishery systems. Fisheries
management decisions of  the strategic type aim to
identify policies that achieve declared objectives.
Objectives tend to be broad, general statements about
achieving acceptable compromises between obtain-
ing high yields in weight or in value, maintaining
employment on a sustainable and economically viable
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basis, and maintaining some low risk of  resource deple-
tion. Once objectives are defined, strategies designed
to achieve the objectives may be sought.

Alternative strategies may be compared with
respect to quantities of  interest like central tendency
for yield, magnitude of  annual fluctuations in yield,
exploitable biomass levels (reflecting catch rates and
costs) and frequency that biomass may drop below
some threshold. The temporal trajectories of  these
and other quantities of  interest need to be examined
over typically long time periods to contrast the con-
sequences of  candidate strategies. Such long-term
forecasts typically aim to find steady-state char-
acteristics for a range of  assumptions about manage-
ment (e.g. fishing mortality, selection pattern). The
analysis can involve finding equilibrium points such
as the fishing mortality rate that maximises yield,
either by conventional means (Thompson and Bell
1934; Sissenwine and Shepherd 1987) or by intro-
ducing stochastic considerations and estimating
stationary distributions for the quantities of  interest
(Skagen 1999). Calculations of  reference points
relating to long-term equilibria (such as MSY, maxi-
mum sustainable yield) and to stock collapse can be
useful in addressing management questions of  the
strategic type and in designing long-term harvest
strategies. Once a favoured strategy has been identi-
fied, it may be possible to devise a preagreed rule for
managing changes in catches in response to new
information about stock size.

The expected consequences of  implementing
such rules can then be evaluated by modelling the
data-gathering, assessment procedure and imple-
mentation as part of  an extensive simulation experi-
ment (Butterworth 

 

et al

 

. 1997; Kirkwood 1997;
Butterworth and Punt 1999). Often, however, the
decision-making process is embedded in a complex
negotiating process which is not amenable either
to preagreement or to simulation modelling. The
important innovation introduced by the simulation
experiment approach is that the consequences of  un-
certainty due to the assessment procedure and im-
perfect implementation of  regulatory measures can
be investigated directly. Such studies have been used
to address a wide range of  questions in fisheries, e.g.
conditions for stability in exploited ecosystems (Collie
and Spencer 1993), sensitivity to environmental vari-
ation (Basson 1999), choice of  appropriate threshold
levels under alternative biological assumptions
(Zheng 

 

et al

 

. 1993) and many other case-studies such
as those given in Kruse 

 

et al

 

. (1993) and Payne (1999).
The studies tend to focus on the consequences for

management decisions of  some population dynamics
parameters being subject to some type or degree of
uncertainty, whether this is assumed or measured.
The conclusions of  studies of  this type depend sub-
stantially on the estimates of  uncertainty that are
either assumed or derived elsewhere. Hence, we do
not here review in detail such studies, which are seen
principally as uses of  the uncertainty estimates which
are the subject of  our paper.

On occasion, it is desired to devise tactics to achieve
a medium-term objective. Medium-term forecasts
are used more to support policy decisions over several
years, and to represent the evolution of  a population
from an initial state towards another under different
management regimes and states of  nature, and
hence to investigate the associated gains and costs of
moving to different states. The forecast period for a
medium-term forecast is usually related to the lon-
gevity of  the species in question and, for many fish
stocks, this tends to be in the range 5–10 years. In
general this means that the population at the start of
the forecast, which has typically been estimated, is
completely replaced with unknown recruitment by
the end of  the forecast period. The results are there-
fore dependent on current estimated state of  the
stock and on an adequate representation of  the
population dynamics of  the stock because the results
are based on unmeasured future recruitment, sur-
vival, growth and maturation. Both uncertainties in
the initial state of  the population and uncertainties
in the representation of  population processes can
have large influences in the outcome of  such model-
ling exercises. Medium-term projections may be used
in an 

 

ad hoc

 

 way to guide management decisions over
a number of  years (Anonymous 2000a).

 

Determining tactics

 

Short-term forecasts are generally used to support
decisions about tactics or management measures
(e.g. setting a quota) in relation to an established
decision rule and reference points derived from the
policy analysis. Such forecasts typically require estim-
ates of  the probabilities that parameters of  interest
would exceed their reference points, associated with
the various alternative actions being considered for
the immediate future fishing season. The quantities
of  interest in short-term projections are usually
exploitation rate and biomass or spawning biomass,
and changes in these quantities. The results are often
presented in the form of  the probability of  some event
occurring as a function of  the quota (Fig. 1). The
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results of  short-term forecasts are strongly depend-
ent on the abundance of  recruited year-classes and
that of  year-classes that are about to enter the fishery.
They are not influenced much by year-classes that will
not be fully selected in the short term. Consequently,
issues such as the form of  the stock–recruitment
relationship or changes in growth or predation are
largely irrelevant for short-term forecasts.

Though uncommon, tactics such as quotas may
be established for several future fishing seasons,
generally not more than two or three years. These
situations are more dependent on accurate pre-
dictive recruitment models.

 

Uncertainty and conditioning

 

It is inescapable that estimation of  uncertainty is
conditional on a set of  assumptions or expert beliefs
about some aspects of  the analysis. This we refer to
as ‘conditioning’ of  the estimation. An excellent
description of  structural models and conditioning
assumptions made in fisheries is provided by Quinn
and Deriso (1999). Some examples of  conditioning
include:

 

•

 

Predicating forecasts on a single-species popula-
tion model

 

•

 

Assuming lognormal distribution of  errors for
surveys

 

•

 

Assuming a constant, known natural mortality

 

•

 

Assuming recruitment will follow a Beverton–Holt
function.

Assessment forecasts are predicated on a large
number of  conditioning assumptions, though many
of  these choices may not be explicit. The choices on

which to condition are always subjective to some
extent and no account is taken of  the uncertainty
surrounding how the conditioning is achieved. In
other words, uncertainty due to stochastic noise
about an accepted model is what is usually presented
for management purposes, and this is only a part of
the true uncertainty. Obviously, the skill required of
a stock assessment scientist is the ability to make appro-
priate choices about conditioning assumptions, and
the choices made will be very specific to each stock.

Some conditioning choices may be made to tailor
an application for a particular management pur-
pose. Typically, management questions relating to
determination of  immediate management measures
depend mostly on uncertainty about the current
state, while management questions relating to strategic
issues are mostly affected by uncertainties in popula-
tion dynamic processes. Accordingly, for example,
models used in the former situation might condition
on stationary somatic growth without significant
loss in accuracy while models used in the latter situ-
ation may need to condition on density dependent
somatic growth. Other conditioning choices can be
considered ‘biological’ in nature in that they will be
made on the basis of  historic data about each stock
for which a method is applied, such as the choice of
stock–recruitment relationship. These conditioning
choices often are the subject of  informed, stock-specific
discussions.

We classify conditioning according to choice of
structural model, choice of  error model and choice of
inference paradigm. Within these classes, we con-
sider the key conditioning choices that need to be
addressed when conducting assessments and fore-
casts, and some of  the alternative assumptions that
are made for each. The issues and options identified

Figure 1 This type of  presentation 
has been used to indicate to manage-
ment agencies the probability that 
exploitation rate in the short term (u) 
will exceed a target exploitation rate 
(uref) for a range of  possible quota 
options in the short term. Uncer-
tainty in the target rate uref is not 
usually admitted. In principle, short-
term management decisions can be 
based on a probability of  exceeding 
the target rate which may be considered 
acceptable. Similar presentations have 
been made for biomass references.
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cover the range that we have commonly encountered
when providing management advice in the North-
East Atlantic, Eastern Canada and Australasia (see
Appendix). However, it should be recognised that
the most important issue for a specific case may be
one that is also unique to that case [see Table 2 of
Butterworth and Punt (1999)]. This becomes
increasingly likely once attempts are made to consider
multispecies impacts.

 

Conditioning on structural models

 

In this section we describe some of  the assumptions
most frequently made about mortality, catchability,
growth and maturation, dependence of  recruitment
on stock size, and ecosystem considerations. For
convenience, we discuss here a few cases where the
structural model in question is simply a parameter
with a fixed value.

 

Mortality processes

 

Most single species age-structured models partition
mortality into two components, fishing mortality, 

 

F

 

,
associated with the fishery harvest, and natural
mortality, 

 

M

 

, associated with all other causes of
death. Denoting population abundance in numbers
by 

 

N

 

, the mortality dynamics are described by the
system of  differential equations:

(1)

(2)

or their finite difference analogue. Solving the differ-
ential equations using year as the unit of  time (

 

y

 

) and
annual time increments yields the familiar exponen-
tial decay and catch equation for fish of  age 

 

a

 

.

(3)

(4)

It is not possible to estimate a complete array of  age-
and time-varying natural mortality. Often a single
common value, or at most a few values common over
large blocks, is prescribed. In many applications
natural mortality is assumed known without un-
certainty. Although it is highly desirable to consider
uncertainty in natural mortality, it is often the case
that no appropriate data exist for such estimation. If
natural mortality can be treated as an estimable
parameter of  the model (e.g. Haist 

 

et al

 

. 1993; Smith
and Punt 1998; Patterson 1999), the data and,

where applicable, the priors determine its value. In
contrast, Monte Carlo methods that generate a value
for natural mortality from some prior are based on
the assumption that the assessment data provide
essentially no information on natural mortality
(Restrepo 

 

et al

 

. 1992; Powers and Restrepo 1992;
Mesnil 1993a, 1995

 

)

 

. Almost invariably, natural
mortality is considered a stationary process and fore-
cast natural mortality for projections is drawn from
the same estimated or assumed distribution. One
additional, widely used approach is to condition a
stock assessment on a fixed value for natural mortality
but to admit that forecast natural mortality for pro-
jection may change by an amount for which a prior
distribution may be specified (Anonymous 1993).

Though estimation of  a complete array of  age- and
time-varying fishing mortality is technically possible,
results tend to be unreliable and this approach is not
common. Two frequently encountered techniques
are employed to reduce the number of  parameters
required to be estimated. If  the stock assessment model
is conditioned on precise catches at age, then the
structural model reduces to the conventional virtual
population analysis (VPA) assumptions, i.e. the
catch equation may be applied deterministically. This
model is of  course widely used and forms the repres-
entation of  the mortality processes in the adaptive
framework (ADAPT) (Gavaris 1988) and survivors
analysis (Doubleday 1981) and its extensions (XSA)
(Shepherd 1999). Additional conditioning con-
straints about the relative fishing mortality rates on
some of  the ages in the last year or on the older ages,
or similar constraints about relative catchabilities on
some older ages (see Catchability section below) will
be required to obtain acceptable results. Without such
constraints, VPAs tend to solutions for all 

 

F

 

 

 

→

 

 0 and
all 

 

N

 

 

 

→

 

 

 

∞

 

.
Alternatively, if  observation error is admitted for

the catch at age, then it is necessary to formulate a
structural model to represent belief  about underlying
mortality processes. The ‘separable’ models based on the
approach of  Fournier and Archibald (1982) condition
on the assumption that fishing mortality 

 

F

 

 is depend-
ent only on a year-effect 

 

f

 

y

 

 and on an age-effect 

 

S

 

a

 

.

(5)

Often, only observation errors are admitted, but a
more recent approach is to admit that deviations
from this underlying process do occur and can be
estimated in a time-series framework (Gudmundsson
1994, 1998; Deriso 

 

et al

 

. 1998; Ianelli and Fournier
1998; Millar and Meyer 2000).

dN
dt
------- F M+( )N–=

dC
dt
------ FN=

Na 1, y 1+ + Na,ye
Fa,y Ma,y+( )–

=

Ca,y

Fa,yNa,y(1 e
Fa,y Ma,y+( )– )–

Fa,y Ma,y+( )
-------------------------------------------------------------=

Fa,y fySa=
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In a surplus-production modelling context, Punt
and Butterworth (1993) pointed out that the pres-
ence of  a process error in a situation assessed by
means of  an observation-error estimator could lead
to substantial negative bias in the estimates of  vari-
ance. However, using similar approaches Pella (1993)
reported that methods based on the Kalman filter
could fail to estimate the precision of  parameter
estimates owing to singularity in the information
matrix, when process error was admitted. Pella recom-
mended the use of  bootstrapping methods instead.
Similar considerations probably apply in an age-
structured context also.

When estimating mortality and population abund-
ance, some analysts choose to include an assumption
that either or both fishing mortality and population
abundance are not very likely to have departed from
the averages of  recent years. Such ‘shrinkage’ (Copas
1983) of  parameter estimates towards historic values
is, in effect, including a form of  prior in the analysis.
As in the case when any priors are included in an
analysis, there is a risk that it may introduce undesir-
able biases both in the parameters and in the vari-
ance estimates.

The choice of  structural model may be highly
dependent on the institutional background of  the
analyst, as there are clear geographical preferences.
For most demersal stocks assessed in the North-East
Atlantic area, the preferred analytic method is XSA.
In the North-West Atlantic, ADAPT is widely used,
whilst the ‘separable’ models are the methods of  first
choice in the North-East Pacific, Australia and for
pelagic stocks in the North-East Atlantic. Biomass-
dynamic models seem more widely used in South
Africa and for the assessment of  tuna populations
than elsewhere. However, such choices also reflect
regional data availability.

 

Catchability

 

Assumptions regarding the relationship between the
indices of  abundance and population numbers
(catchability) are required by most methods of  fisheries
stock assessment. Given the importance of  indices of
abundance when conducting stock assessments,
errors made when selecting a model for catchability
can lead to major biases in estimates of  quantities of
interest. Traditionally, it has been assumed either
that catchability is time-invariant (but age-specific)
or that catchability changes in a simple fashion with
abundance or time (Pope and Shepherd 1985). The
assumption of  time-invariant catchability is usually
appropriate where an index of  abundance is derived

from a survey with standardised methodology, but
where the index is derived from commercial fishing
activity it is often appropriate to entertain hypotheses
of  time-dependent or stock-dependent catchability.
Some assessment methods, and particularly XSA
(Shepherd 1999), require further conditioning on
assumptions of  relative catchability at age. For example,
it is usual in the application of  this method to con-
strain some number of  catchability parameters at
older ages to be equal. More recently, approaches
that allow for the possibility that catchability varies
randomly over time have been developed (e.g. Ianelli
and Fournier 1998; Porch 1998). These approaches
treat changes in catchability between years as random
variates and hence model catchability by means of
an autoregressive procedure. Another option is to
constrain catchability to a value which is ‘known’
from the survey design.

Changing conditioning on catchability assumptions
can result in large changes in perceptions of  stock
size. For example, sensitivity of  perceptions of  mackerel
stock size to assuming unit catchability in the egg
survey biomass estimates was explored by Kolody
and Patterson (1999). Residual diagnostics about
the catchability relationship may be examined for
goodness-of-fit but clear favouring of  one catchabil-
ity model may not be evident. It has been shown that
for northern cod and some other stocks, the choice
of  catchability model may have a large influence on
perceptions of  both the point estimate and the
attached uncertainty estimate of  stock size (Walters
and Ludwig 1994; Walters and Maguire 1996; Walters
and Pearse 1996; Walters and Bonfil 1999). These
studies show that much greater uncertainty is
admitted if  nonlinear hypotheses about catchabil-
ity are entertained. Also, estimates of  recruiting
year-class abundance and hence of  catches in the
immediate future may be highly sensitive to catch-
ability model choice (e.g. Faroes haddock, Anony-
mous 1999a).

 

Growth and maturity

 

It is important to consider uncertainty in all com-
ponents of  spawning stock biomass (numbers of  fish,
weight of  fish and the proportion mature at each age).
Density-dependent effects on growth and matura-
tion are believed to be important factors that can
have an impact on medium- and long-term forecasts
(Patterson 1997; Helser and Brodziak 1998; Punt
and Smith 1999). However, it is not common prac-
tice for these effects to be included in assessments or
forecasts, more common practice being to assume
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that maturity- and weight-at-age are time-invariant.
This is perhaps surprising as in several cases growth
processes are known to have undergone long-term
changes (Patterson 1997; Lilly 1998; Clark 

 

et al

 

. 1999),
and density dependence of  growth has also been
documented (e.g. Toresen 1986, 1988).

To the extent that one may expect larger fish to be
more mature, one may expect that variations in matur-
ity would be associated with changes in growth and
condition. It is therefore probably important to pre-
serve the linkage between weight- and maturity-at-age
when conducting assessments and forecasts. A variety
of  different approaches to making allowance for
uncertainty in weight- and maturity-at-age in some
future year have been considered, and are described
below under ‘Error models’.

 

Stock–recruitment models

 

It is necessary to model the relationship between
stock and recruitment to conduct medium- and
long-term forecasts. This relationship is typically
difficult to quantify for many reasons, including very
high natural variability, large measurement errors
and lack of  sufficient data contrast. The parameters
of  the stock–recruitment relationship can be estimated
in one of  two ways. Either the historical estimates of
stock and recruitment from a population model are
treated as ‘data’ in an analysis subsequent to the
stock assessment (e.g. Anonymous 1993; Bell and
Stefánsson 1998; Skagen 1999) or the parameters of
the stock–recruitment relationship are estimated
along with other parameters in the population
model-fitting process (e.g. Fournier and Archibald
1982; Haist 

 

et al

 

. 1993; Smith and Punt 1998). In
the latter instance, the estimates of  other parameters
(e.g. recruitment, fishing mortality) and their vari-
ances can be affected depending on the relative
weight assigned to the stock–recruitment relation-
ship in the objective function.

Many parametrisations for the stock recruitment
are possible, including various forms with an auto-
regressive structure. The most common parametric
relationships are the Ricker and Beverton–Holt rela-
tionships with lognormal errors. There are also
applications of  

 

ad hoc

 

 (e.g. assuming a two-line model)
and nonparametric (e.g. Evans and Rice 1988; Restrepo
1998) procedures. Recently, attention has begun to
be focused on whether the stock–recruitment rela-
tionship may exhibit depensation (Myers 

 

et al

 

. 1995;
Liermann and Hilborn 1997) and Punt and Smith
(1999) include a depensatory stock–recruitment
relationship as one scenario in an evaluation of

management procedures for Australia’s eastern
stock of  gemfish.

Often, there is poor contrast in the historic obser-
vations of  stock size, because data only exist over a
time period when the stock has been relatively stable
(in either a high or a low state). Under such condi-
tions, only calculations conditioned on subjective
assumptions about the form of  the stock–recruitment
relationship outside the observed range of  stock sizes
can be made. Uncertainty about the appropriate sub-
jective choice may often largely dominate uncer-
tainty in the forecasts. Nonparametric approaches to
extrapolating outside the range of  observed data have
also been used in long-term forecasts (e.g. Cook 1998).
A further problem is that that if  there is poor contrast
in the data, the estimated parameters in a stock–
recruitment model will be highly correlated, which can
create problems if  they are treated as independent.

Some stocks have population dynamics that are
dominated by infrequent but extremely large year-
classes. Recruitment modelling remains problematic
in such cases and, although forecasts based on mean
expected recruitments can be calculated, the value of
these for management purposes remains unclear. It is
often argued that recruitment variability is dominated
by environmental or other effects which are exogen-
ous to the population dynamics, resulting in regime
shifts or periods of  high or low recruitment (Gilbert
1997). Modelling such dependencies has attracted a
great deal of  research effort, and many workers have
shared the hope expressed by Hjort (1909) that “it
will be possible by means of  hydrographical researches
to foretell important ocurrences both on land and in
connection with the fisheries”. However, in a recent
review, Myers (1998) concluded that only a small
proportion of  reported relations between environ-
mental variables and recruitment could be verified.
Exceptions were generally stocks at the edge of  the
species’ geographical range. Even for those cases in
which robust relations describing the relationship
between recruitment and environmental variables
can be described, it is not possible to characterise
recruitment variability unless externally specified
probability distributions for such determining effects
can be generated. The only means currently used to
model the consequences of  this is the introduction of
various orders and magnitude of  error autocorrelation
when generating fluctuations in recruitment about a
deterministic stock–recruitment relationship.

It is clear from the above discussion that the appro-
priate form of  the stock–recruitment relationship
remains a significant issue of  debate for many stocks.
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Thus, in addition to taking into account uncertainty
about the values for the parameters of  the relation-
ship given a particular form, and variability in the
annual recruitments conditioned on annual stock
sizes, uncertainty about the form of  the relation-
ship needs to be considered. Though not routinely
done, model uncertainty in the form of  the stock–
recruitment relationship can be incorporated in
estimation procedures (Geiger and Koenings 1991;
Adkinson and Peterman 1996; Patterson 1999).

 

Multispecies processes

 

Estimation of  interspecific effects—usually predation
—has been attempted through both age-structured
(Multispecies VPA, Pope 1991) and biomass-structured
approaches either in steady state (‘ECOPATH’; Polovina
and Ow 1985; Christensen and Pauly 1996; Walters

 

et al

 

. 1997) or as a biomass time series (Freeman and
Kirkwood 1995). Fitting age-structured ecosystem
models are very demanding of  data, and so have been
applied mostly in areas where extensive data resources
exist, such as the North Sea (e.g. Pope and Macer
1991), Georges Bank (Collie and Tsou 1996) and the
Baltic Sea (Sparholt 1994), or have been applied to
a small subset of  species (e.g. Punt and Butterworth
1995). Biomass-structured approaches have been
used widely in data-poor situations (e.g. many
papers in Christensen and Pauly 1993; Shannon and
Jarre-Teichmann 1999; Bundy 

 

et al

 

. 2000). The two
approaches may lead to rather different perceptions
of  ecosystem dynamics even when applied to the
same data (Christensen 1995).

Perceptions of  long-term stock dynamics based on
multispecies models may be very different from those
based on comparable single-species models (Daan
1987; Pope and Macer 1991; Punt and Butterworth
1995), although this is not a general rule. Collie and
Tsou (1996) found similar long-term trends with
models of  either type. However, the uncertainty
introduced by the possibility of  admitting multi-
species effects is likely to be most important for
strategic decisions, such as choice of  target bio-
masses or exploitation rates. For this purpose, multi-
species VPA and fleet interaction models arguably
hold more promise than models of  the ‘ECOPATH’
family (Larkin 1996).

Within the ICES area, use of  multispecies models
for management advice has generally been limited to
the use of  estimates of  natural mortality derived from
multispecies models, but still used within single-species
models (Sissenwine and Daan 1991; Bogstad 1993).
This is arguably because short-term forecasts are

relatively insensitive to the changes in natural mortality
that may occur owing to varying levels of  predator
abundance, and for this purpose there is little or no
advantage in using the much more complex multi-
species models (Bogstad 

 

et al

 

. 1995; Magnusson 1995;
Daníelsson 

 

et al

 

. 1997; Tjelmeland and Bogstad 1998;
Stefánsson 

 

et al

 

. 1997, 1998, 1999). For example,
Stefánsson and Baldursson (1998) compared different
scenarios of  model complexity involving Icelandic
cod, capelin, shrimp, three species of  whale and two
species of  seal. This study concluded that increasing
model complexity had relatively little impact on
catch forecasts (10% variation in mean cod catches
between scenarios).

Clearly additional uncertainty may be introduced
according to the possibility of  conditioning advice on
a multispecies rather than a single-species model.
Extending the complexity of  an assessment model
also extends the complexity of  the conditioning
choices available. For example, multispecies model
estimates can be highly sensitive to the assumed form
of  the predation relationship, about which there is
little empirical information (Larsen and Gislason
1992; Magnusson 1993; Gislason and Sparre 1994;
Rindorf  

 

et al

 

. 1998). Furthermore, in such complex
models, obscure parameter interactions may lead to
inappropriate conclusions being drawn (Hilden
1988). Owing to the structural complexity of  these
models and the multiplicity of  plausible error structures,
implementation of  any of  the uncertainty-estimation
procedures that we discuss below has only been very
rarely attempted (Stefánsson and Baldursson 1998),
and in such cases can prove computationally almost
prohibitive.

 

Conditioning on error models

 

We describe some assumptions about the variability
of  various processes and the variability with which
different sorts of  information are gathered. These are
grouped by type of  information concerned.

 

Total catch

 

Most stock assessments condition on reported catch
data (i.e. assume that these are known exactly), but
reported catches frequently suffer from systematic
bias due to a number of  causes. These may include
weaknesses in the catch reporting system, such as
problems in gaining access to points of  landing, or
deliberate misreporting of  catches in response to
regulations. In addition, landings may only reflect
part of  the true catch if  fish are discarded at sea. Where
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significant discarding occurs, but is unsampled, the
use of  landings data may be inappropriate. These dis-
tortions in the recorded catch, if  uncorrected, lead to
biases in estimates of  quantities such as stock size
and fishing mortality rate (Sinclair 

 

et al

 

. 1996; Deriso

 

et al

 

. 1998; Patterson 1998). Furthermore, the nature
of  misreporting and discarding is such that even if
estimates of  these effects exist, there is considerable
uncertainty about their magnitude and properties.

Accounting for systematic bias in catch informa-
tion can sometimes be achieved in the estimation
process of  a stock assessment where adequate fishery-
independent data exist and this may provide a means
of  characterising the associated uncertainties needed
for forecasting (Anonymous 1999b). However, where
misreporting and discarding respond to manage-
ment actions in an unpredictable manner, it is
extremely difficult to characterise uncertainty, yet
this can be crucial in medium- or long-term fore-
casts. Problems of  systematic bias in catches can be
investigated by conducting assessments using a range
of  alternative catch series (e.g. Smith and Punt
1998). In most cases the difficulty in estimating even
a distribution for catch misreporting has resulted in
a failure to incorporate this source of  uncertainty.
The consequences of  not doing so are likely to be
highly case-specific, yet in general terms, more likely
to result in bias in estimates of  fishing mortality rates
than in estimates of  stock size and dependent quantities
(Patterson 1998).

 

Catch-at-age

 

Catch-at-age data consist of  information on catch
and on proportion at age derived from sampling of
the fishery. As noted above, the catch is often assumed
known without error. When the structural model
employed is the conventional ‘VPA’ type, it is also
necessary to assume that the measurement error for
the proportion at age is negligible. If  it is assumed
that the proportion-at-age data are observations
subject to non-negligible measurement error, it is
then necessary to select an appropriate observation
error model for the catch at age. The most common
assumptions are multinomial error (e.g. Fournier
and Archibald 1982) and lognormal error (e.g. Deriso

 

et al

 

. 1985). Of  these alternatives, the assumption of
multinomial error would seem 

 

a priori

 

 to be the most
appropriate as it accounts for correlations among
age groups. Nevertheless, the lognormal assumption
has been the more common in practice (e.g. Deriso

 

et al

 

. 1985; Kimura 1990; Smith and Punt 1998).
This may be because stratified sampling schemes

are often implemented, which would result in lower
coefficients of  variation at high and low ages than
if  purely random samples were taken. It would
arguably be prudent to test the appropriateness of
these competing models, but such evaluations are
rarely undertaken (Crone and Sampson 1998).

 

Indices of  abundance

 

Indices of  abundance are usually obtained from
research vessel surveys but occasionally also from
commercial catch-rate information or tagging experi-
ments. They comprise the most important informa-
tion available for estimating the size of  a fish stock,
and the uncertainty about the relationship between
the indices and population abundance is likely to
be the major source of  uncertainty for short-term
forecasts. Consideration of  uncertainty in indices of
abundance is therefore central to estimating un-
certainty in stock size using an assessment model. In
general, the indices of  abundance are assumed to be
independent and lognormally distributed, despite
problems encountered with zero observations. Some
assessments (Patterson 1999) consider the alternat-
ive assumptions that the indices of  abundance are
normally or gamma distributed. Non-parametric
methods for estimating uncertainty do not require
specification of  an error distribution but it is still
necessary to ensure that the residuals are independ-
ent and identically distributed. When commercial
catch-per-unit-effort information is used as an index
of  abundance, it would be reasonable to expect correla-
tions between the catches at age and the abundance
index. Account is rarely taken of  such correlations.

 

Variances for different data sources

 

In addition to the error conditioning within the
catch at age or within each index, it is usually neces-
sary to estimate the relative variance between the
various data arrays. The point estimates from the
assessment are often very sensitive to how this is
done. Alternatives are to apply maximum likelihood
or iterative reweighting techniques (i.e. to condition
the estimate of  the data variance on the fitted stock
assessment model) (e.g. Darby and Flatman 1994)
or to heavily weight some parts of  the data to estim-
ate their inherent variability. Substantial doubt
has been expressed about the stability of  such estim-
ators in situations where data are limited. Also,
estimating data variances using Bayesian methods
can be computationally prohibitive (Anonymous
1999c). This issue is related to the question of
whether all data should be included in a single
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model-fitting exercise or alternatives explored using
each data set independently and it is also related to
the error-in-variables question (e.g. Polacheck et al.
1993; Schnute and Hilborn 1993; Stefánsson 1998).
Additional external constraints may be imposed on
estimates of  data variances. For example, taper weight-
ing (Cleveland 1981) may be used to make the point
estimates robust to data errors earlier in the time-series.

Another approach is to estimate data variances
externally to the assessment model. For example,
simple multiplicative models [general linear models
on log-scale—Shepherd and Nicholson (1986, 1991)]
have been used for the estimation of  the variances of
various fisheries data sets, ranging from catch at age
(Pope 1993) to mean weight and proportion mature
at age (Anonymous 1994b). Such methods have
been structured analogously to an analysis of  variance,
and depend on conditioning a variance estimate on a
number of  linearising assumptions, which typically
include assumptions about time-invariant selection
and catchability. In spite of  these strict assumptions,
these models are seen to explain most of  the vari-
ation in the data and therefore often give plausible
estimates of  the error variation.

Sample estimates of  survey data variances have
been calculated by various means, most often by
design-based estimators (Smith 1990) assuming
a statistical error distribution within areas of  hom-
ogeneous abundance (Leaman 1981; Gunderson
1993; Stefánsson 1996), geostatistical approaches
(Rivoirard et al. 2000), cluster analysis (Williamson
1982) and resampling methods (Aglen 1989; Warren
1994; Smith 1997). However, there is usually concern
that sampling variability is only a part of  the
overall survey variability (Lowe and Thompson
1993), and variance estimates so obtained are rarely
used directly in assessments.

Sample estimates of  catch rate variances can be
obtained from model-based approaches that aim to
remove confounding effects, e.g. vessel, gear, area
and season, from the abundance signal. Analytical
estimates are directly available (Gavaris 1980;
Kimura 1981) although resampling methods have
also been applied (Stanley 1992). As with survey
variances, however, variance estimates so obtained
are rarely used directly in assessments.

Constraints on variances, reflecting prior beliefs
about the reliability of  different data sources, have
been the topic of  much discussion at assessment
working groups. Despite this, there is relatively little
knowledge or study of  the way in which making
prior assumptions about data variances modifies any

subsequent estimates of  uncertainty. One cannot but
suspect such effects to be large, given the often sub-
stantial effects constraints on data variances have on
the point estimates.

Weight and maturity at age
If  variability in growth and maturity is to be modelled,
perhaps the simplest assumption is that observations
of  weight at age and maturity at age are made of
fish which have time-invariant growth and matura-
tion in the population, the annual differences being
due to measurement error. A nonparametric repres-
entation of  this variability was described by Skagen
(1999), in which a year is drawn at random from
the historical data series and both maturities and
weights at age for this year are used for the future
year to preserve the correlation between maturity at
age and weight at age. A parametric approach to the
same concept was provided by Patterson and Melvin
(1996) amongst others. In this example, maturity at
age is logit- or arcsin-transformed and the trans-
formed variable is assumed to be normally distrib-
uted. The amount of  variation in the normal
distribution can be estimated from the historical
data on interannual change in maturity.

Alternatively, one may make an assumption that
variability occurs in the growth processes rather
than in the observation. In the procedure used by
Bell and Stefánsson (1998), a year is drawn at ran-
dom and the changes in maturity and weight by
cohort, from that year to the previous one, are used
to determine the change in maturity and weight
between the year of  interest and its previous year (if
maturity at age exceeds one, it is truncated at one).

More complex models can be contemplated, e.g.
representing maturity at age using a growth or
time-series model, which may even be functionally
related to density (e.g. Smith and Punt 1998) and
the sizes of  other populations in the ecosystem.
Nevertheless, none of  the above approaches is able
to mimic sudden regime shifts which, although rare
events, are likely to have profound impacts on
strategic decisions.

Recruitment
There is considerable diversity in how allowance is
made for annual variability in recruitment when
conducting forecasts. The annual recruitment is
usually determined by using the deterministic com-
ponent of  the stock–recruitment relationship to find
the expected recruitment for a given stock size and
this is then modified by adding a residual to it. These
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residuals can be either resampled, based on an already
fitted stock–recruitment relationship, or modelled as
an autoregressive process (Anonymous 1993; Skagen
1999). Although these approaches seem intuitively
appealing, they sometimes lead to time-streams of
recruitment that appear biased and more variable than
the historical observations of  recruitment (Skagen 1999).

Inference paradigm and associated 
estimation methods

Two inference paradigms are in common use in
fisheries: Bayes and frequentist. A third, the likeli-
hood paradigm (Edwards 1972) is used only rarely.
Wade (1999) provides an extremely helpful compar-
ative overview of  the three inference paradigms. The
fundamental difference between the approaches is that
frequentist methods treat parameters as unknowns
that posses a ‘true’ value. In the likelihood and Bayes
approaches, parameters are considered to be random
variables. The Bayes methods are subjectivist in
conception and provide a formal mechanism for the
updating of  belief  upon acquisition of  new data.
Hence, to use Bayes methods it is necessary to have
a formal description of  the state of  knowledge before
information is analysed. Appropriate formulation of
such ‘prior’ belief  is often elusive. Likelihood methods
are free of  such prior distributional assumptions about
parameters, though—as for all methods—they are
dependent on belief  about the appropriate repres-
entation of  processes and form of  error distributions.

Consider a situation in which a population with
true parameters ξ is sampled and yields observa-
tions D. The data provide an estimate of  the ξ using
an estimator ξ̂ (D). Frequentist methods consider
P[ξ̂ (D)|ξ], the distribution of  parameter estimates
on repeated sampling, from which, e.g. confidence
intervals for ξ can be calculated. Although it is for-
mally incorrect to do so, such confidence statements
are often loosely interpreted by making an inverse
probability assumption and using such confidence
statements as statements about P(ξ|D), i.e. the prob-
ability of  alternative values of  ξ given the data.

In a Bayes approach, belief  about ξ  [expressed as
a prior P(ξ) ] is updated according to the probability
model P(ξ|D) = P(ξ). P(D|ξ)/∫P(D|ξ) P(ξ), which
can then be used to compare belief  about alternative
ξ. Under a likelihood paradigm, confidence in altern-
ative ξ can be compared in proportion to P(ξ|D)
directly. The relative probability (termed likelihood)
of  alternative values of  one element n of  ξ, ξj say, is
calculated as P[ξ j|D (ξ*n,n <> j )], in which ξ*n,n <> j

represents the parameter values corresponding to
the maximum of  the probability function P excluding
parameter ξj, given the data D and fixed ξj. Fisheries
stock assessment models are typically nonlinear in
the model parameters, and uncertainty estimation
using any of  the methods necessitates the use of  com-
putationally intensive numerical techniques. More
significantly, the nonlinearity of  the models affects
the sampling distributions. For frequentist methods,
these effects have been studied and are associated
with estimation bias. Various techniques have been
developed to deal with estimation bias arising in
complex nonlinear models and are discussed for the
frequentist estimation methods. A Bayesian analogue
to bias is not recognised and hence ways to deal with
displacement of  the posterior caused by nonlinearities
have not been investigated.

Bayes methods
Bayesian approaches to summarising and quantifying
uncertainty are widely used as the basis for decision
analysis in a broad range of  fields (Clemen 1996) and
have recently been advocated for general use in the
area of  fisheries management advice (Punt and Hilborn
1997; McAllister and Kirkwood 1998). They provide
a formal framework for calculating the probability of
alternative values of  population parameters given a
particular data set, one or more structural models on
which the calculation is conditioned and a number
of  beliefs about models or parameters from external
sources (expert judgement or other, independent
analyses) which are specified as prior distributions.
Bayesian methods can be used to formally admit
several structural models (Sainsbury 1991; Geiger
and Koenings 1991; Draper 1995; Adkinson and
Peterman 1996; Patterson 1999).

These methods therefore distinguish formally
between the data for the stock being assessed (which
contribute to the likelihood function) and inferences
based on other sources (specified as prior distribu-
tions). Outputs from analyses of  this type are usually
presented as the probabilities associated with altern-
ative values of  the parameter of  interest, integrated
over the admitted distribution of  the other para-
meters. Numerical integration methods have been
developed to allow this computation to be calculated
reasonably conveniently [Markov Chain Monte Carlo
(MCMC) and Sample Importance Resample (SIR)].
Recent examples of  fisheries applications of  MCMC
include Patterson (1999), Patterson and de Cárdenas
(2000) and Millar and Meyer (2000) using age-
structured data, Meyer and Millar (1999) using a
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delay-difference model, and McAllister and Ianelli
(1997) using SIR. Conceptually, Bayes approaches to
representing uncertainty are extremely simple. How-
ever, because analytical solutions are often not pos-
sible, the need to calculate numerical integrations of
high dimensionality can place a large burden on the
computational skill of  the Bayesian analyst, although
more recent software is making this less of  a problem
(e.g. ‘WinBUGS’, MRC Biostatistics unit and Imperial
College School of  Medicine, London, UK; ‘AD Model
Builder’, Otter Research, Sidney, Canada). ‘WinBUGS’
is documented by Spiegelhalter et al. 1995.

Bayes techniques integrate prior information and
data in a cohesive manner, allowing the introduction
of  conditioning in a structured way through the
form of  the likelihood function (and its underlying
structural model) and through the specification of
prior distributions. This strength of  Bayesian methods,
however, introduces complexity due to the require-
ment to specify prior distributions for all of  the
parameters. The appropriate choice of  priors (includ-
ing the attempts at specifying priors that represent
ignorance) offers scope for extensive debates that
rarely reach unambiguous conclusions. Non-parametric
analogues of  Bayesian techniques are not available.

Developing subjective prior distributions can be
subject to considerable difficulty, as seen in the follow-
ing examples.

(i) Priors are often chosen to be ‘noninformative’
although this need not be the case and, indeed, some
authors (e.g. Punt and Hilborn 1997) have argued
that the ability to include informative priors is one of
the major benefits of  Bayesian methods. It is usually
the case that a prior that is noninformative for one
quantity is highly informative for another (e.g. a uniform
prior on current F corresponds to a very informative
prior for current N within a VPA or ADAPT context
because these parameters are linked structurally
through the catch equation). Therefore, it is question-
able whether any prior should be argued to be non-
informative. The metric used when defining the prior
(uniform, uniform on a log scale, etc.) is seldom con-
sidered when priors are specified based on bounds for
parameters even though this decision can impact
results substantially.

(ii) It has been observed that scientists have a
tendency to under-estimate the true uncertainty
when developing priors (Punt and Hilborn 1997).

(iii) It is easy, unintentionally, to base prior dis-
tributions on the outcomes from previous assess-
ments of  the same stock. This can be a major problem
for Bayesian assessments but, because they do not

update the priors, this is not necessarily a problem
for frequentist methods.

Likelihood methods
Likelihood methods formally describe the probability
of  alternative model parameters given the observed
data. This is arguably more attractive conceptually, if
one admits that parameters are random variables,
than frequentist methods—which describe the prob-
ability of  alternative data sets being observed, given
‘true’ model parameters. Likelihood methods are
also free of  the need to define prior probability distri-
butions, an advantage perceived by some in contrast
to Bayes methods. However, where the results of
Bayes analyses can be presented as a distribution for
a parameter of  interest integrated over the possible
values of  other parameters, in a likelihood approach
a probability distribution for a parameter of  interest
is conditioned on the maximum-likelihood values of
the other parameters. Numerical solutions to such
problems are conveniently available only where the
interest parameter is one of  the formal model para-
meters, and not a transformation or projection from
them. Also, calculating conditional likelihoods for
some nuisance parameters such as variances entails
particular difficulties (Royall (1997) covers the topic
of  eliminating nuisance parameters in detail). Plau-
sibly for this reason, few instances of  the application
of  likelihood methods are to be found in fisheries
science, and those examples apply to simple models
only. For example, in a surplus-production modelling
context, Wade (1999) used a grid-step method to
calculate likelihood profiles for the ratio of  population
size to carrying capacity. Values of  three other model
parameters were adjusted to find the maximum like-
lihood, subject to constraining the ratio to one value
within a range of  values in the step search. Punt
and Hilborn (1996) also address the calculation of
likelihood profiles in a surplus-production modelling
context. Application of  the approach to age-structured
assessments with many parameters appears com-
putationally problematic, although as Wade (1999)
suggests, MCMC methods may be of  use in such cases.

Frequentist methods
Frequentist approaches to statistical inference are, in
the broadest sense, a type of  decision making based
on probability (Hoel 1971). As noted above, these
methods rely on calculating a probability model
describing the sampling distribution of  estimators
derived from the data, given particular parameter
values which are assumed to be true. This model can
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be used to construct a confidence distribution for
a parameter. A confidence level describes the probability
that a calculated confidence interval will encompass
the true value (e.g. 95% of  confidence intervals
calculated from a large number of  data realisations
would contain the true value). In practice, only one
realisation is available, and its corresponding con-
fidence distribution is the basis for the claim that
the ‘true’ parameter value will be contained within
an interval with a prescribed confidence, given a
particular set of  data and a structural model. This
confidence distribution can be used to inform
fisheries management decisions.

Results from these methods are therefore condi-
tioned on there not being any relevant information
left out of  the observed data. Outputs from analyses
are usually presented as confidence distributions for
parameters of  interest and are derived from the
sampling distributions of  their estimators, a trivial
conversion for simple problems but more difficult for
complex situations (Efron 1998; Schweder and Hjort
1999). For complex problems, results are obtained
using the delta method approximation or bootstrap
resampling techniques.

Frequentist methods do not offer a structured
framework to incorporate prior information, to
admit multiple model structures or to inject sub-
jective belief. Frequentist analogues for a cohesive
approach to integrating prior information and data
have been proposed (Schweder and Hjort 1999) but
are not in common use. ‘Model weighting’ as a tech-
nique to admit multiple model structures has only
recently received greater attention (Buckland et al.
1997). Adjunct Monte Carlo methods (described
below) have been employed to account for subjective
beliefs about uncertainty in parameters for which
the data are uninformative. Despite these limitations,
frequentist methods remain attractive because they
do not require specification of  prior distributions for
parameters, a significant complication as illustrated
above. Frequentist methods using a Monte Carlo
adjunct, however, require probability distributions
for the model parameters that will be thus simulated.
They serve the same role as priors in a Bayesian ana-
lysis although no allowance is made for the data to
update the priors. A further attraction of  frequentist
methods is the availability of  nonparametric tech-
niques, permitting relaxation of  the error distribu-
tion assumptions.

Delta method. The ‘delta method’ is a technique for
deriving approximate variances and covariances

from the Hessian matrix of  mixed second derivatives
of  the objective function with respect to the model
parameters. The confidence distributions of  parameters
of  interest, being functions of  the model parameters,
can be derived from the delta estimates of  the variance-
covariance of  the model parameters. This requires
either an assumption about the distribution of  the
parameter of  interest (such as spawning stock biomass
or exploitation rate), or assumptions about the distri-
butions of  some of  the estimated model parameters
(such as population abundance or log-scale population
abundance in the terminal year). These distributional
assumptions impose conditioning on the uncertainty
estimation which is additional to the conditioning
assumptions made in the stock assessment model.

The covariance of  model parameter estimators is
calculated from the Hessian matrix assuming linearity
near the solution. Estimators of  both the model para-
meters and the parameters of  interest can be biased
for nonlinear models. An analytical approximation for
the bias of  model parameter estimators was developed
by Box (1971).

Approximate estimates of  variance and bias of
parameters of  interest can be derived analytically
from the distributions of  the model parameters.
Ratkowsky (1983) gives a ‘delta-like’ approximation
for the bias of  functions of  parameter estimators.
Gavaris and Van Eeckhaute (1997) applied a naïve
adjustment for the bias by shifting the confidence
distribution to account for the magnitude of  bias. We
refer to these approaches as the ‘analytic delta’ and
as the ‘analytic shifted delta’ when adjusted for bias.

The first-order approximation is not very reliable
with small sample sizes and nonlinear models. A
better approximation can be obtained by determining
model parameters the distribution of  which is
approximated reasonably well by a Gaussian and
then using numerical techniques to approximate the
distribution of  the parameters of  interest.

It is particularly common to assume that the log-scale
stock size in numbers at age in the first projection
year comes from a multivariate Gaussian distribution
(e.g. as advocated by Richards et al. 1998). Gavaris
and Van Eeckhaute (1997) reported that log-scale
population abundance parameter estimators dis-
played close to linear behaviour, therefore assuming
a Gaussian distribution for them would be preferable
to assuming a Gaussian distribution for the para-
meters of  interest. This assumption should be tested
because it may be questionable for some stocks for
which the likelihood function is not adequately rep-
resented by a quadratic function about its minimum.
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Under this assumption, log-scale population abund-
ances are simulated from a multivariate Gaussian dis-
tribution with the estimated mean and covariance
characteristics. The simulated values are submitted
to the projection algorithm to derive the values of  the
interest parameter. These values are used to con-
struct an empirical distribution function from which
confidence statements may be drawn. We refer to
this approach as the ‘numerical delta’. When the
population abundance parameters are adjusted for
their bias before being submitted to the projection
algorithm (Gavaris and Sinclair 1998), we refer to
the approach as the ‘numerical shifted delta’.

In the North-West Atlantic, the analytic shifted
delta (e.g. Gavaris and Van Eeckhaute 1997) and the
numerical shifted delta (e.g. Sinclair et al. 1996) have
been used to provide advice for management purposes
but results from bootstrap methods have been favoured
recently. Many calculations within the framework of
the International Council for the Exploration of  the
Sea (ICES) are provided for management purposes
based on the numerical delta [e.g. sensitivity analysis
(Cook 1993); use of  ‘WGMTERM’ method (Anonymous
1993); ‘ICP’ (Patterson and Melvin 1996)]. The
main difference is that the former uses only estimates
of  the variances of  population abundances in the
terminal year of  the assessment, whereas the latter
uses estimates of  the covariances of  estimated popu-
lation abundances, fishing mortality and selection at
age. Limited comparison of  analytical shifted delta and
numerical shifted delta, where the covariances of
population abundance parameters were ignored for
the numerical approach, did not reveal much differ-
ence though there was some indication that ignor-
ing covariances could result in under-estimation of
uncertainty (Sinclair and Gavaris 1996).

The analytic approach has the advantage of  being
computationally very efficient, but is relatively inflex-
ible in that it is difficult to introduce or admit uncer-
tainties other than uncertainty in those parameters
that are estimated formally in a model-fitting pro-
cedure. A Gaussian approximation is not strongly
supported for parameters of  interest for fisheries
management. Partly for these reasons, the analytic
method is not currently used widely. Equivalent com-
putations can be calculated numerically and, partly
because of  the greater flexibility to incorporate
uncertainty for parameters external to the formal
estimation and the more plausible assumptions
about a Gaussian approximation for log population
abundance, it has been applied widely in the ICES
area (Anonymous 1993; Patterson and Melvin 1996).

Bootstrap. The fundamental idea of  the bootstrap is
to substitute the empirical distribution function as a
simple estimate for the distribution of  the sampling
errors. This in turn can be used to infer confidence
statements about parameters, as described above.
Either the actual distribution of  the observations can
be used to construct a nonparametric empirical dis-
tribution function by resampling, or else a para-
metric model, with parameter values derived from the
data, can be used to describe the empirical distribu-
tion. In either case, the data-based simulation must
reproduce replicate samples with the same charac-
teristics as the observed sample.

The simplest bootstrap technique for making
inference statements and estimating uncertainty is
the percentile method introduced by Efron (1979).
This is implemented by simply simulating a large
number of  replicate samples and submitting them to
the estimation procedure to obtain bootstrap replic-
ates of  the estimator. The bootstrap replicates are
used directly to construct the bootstrap distribution
of  the estimator on which confidence statements can
be based. Two important qualities of  the percentile
method are the transformation-respecting property
and the range-preserving property. Transformation
respecting means that confidence statements are
not altered by any monotone parameter transforma-
tion. Range preserving means that the confidence
intervals always fall within the allowable range, i.e.
intrinsically positive quantities such as biomass will
not have negative confidence limits, as can occur with
some other methods. Not all bootstrap techniques
possess these properties.

For complex estimation procedures, such as non-
linear stock assessment models, the percentile method
can be improved by accounting for bias (Efron 1982)
and for variance acceleration (Efron 1987). Variance
acceleration is a quantity used by Efron to describe
the rate of  change of  the standard error of  a para-
meter estimate with respect to the true value of  the
parameter. This bias-corrected and accelerated
bootstrap is an automatic way of  ensuring a proper
translation from a sampling distribution to a confid-
ence distribution. These bootstrap variants retain
the transformation-respecting and range-preserving
properties. We describe further below the parametric
and nonparametric variants of  this approach.

Parametric bootstrap. We noted above that when
using a parametric bootstrap, the empirical distribu-
tion function is estimated using a parametric model
of  the data. This is implemented by assuming that the
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observations were drawn from a distribution with a
particular parametric form. The parameters describ-
ing the distribution are estimated from the sample
observations. Bootstrap replicate samples are gener-
ated by drawing from the distribution characterised
by the estimated parameters. This variant of  the
bootstrap relies on parametric conditioning of  error
distributions for the observed data.

The distributions used to generate the data may
be derived from statistical analyses external to the
model estimation (e.g. resampling from very-fine-
scale sampling information; Kell et al. 1999) or by
using Shepherd and Nicholson’s (1991) method to
estimate the mean and variance of  age and year
effects to specify the distributions, as used by Bell and
Stefánsson (1998) and Stefánsson and Bell (1998).

Nonparametric bootstrap. One way of  circumventing
the need to make distributional assumptions about
observation errors is to use the observed data as the
estimate of  their empirical distribution function
directly. This is implemented by generating bootstrap
replicate samples by resampling with replacement
from the observed data. For complex problems, this
procedure may be onerous or impractical. Smith and
Gavaris (1993) were able to implement this approach
for a stock assessment model in a special case where
the sampling intensity for the stratified random
survey was large enough to permit resampling. This
approach, if  it can be implemented, produces the
ideal bootstrap as it does not condition on error
distributions or model results.

A simpler and more practical nonparametric boot-
strap is based on resampling model residuals and is
thus model conditioned (Efron and Tibshirani 1993).
This is implemented by generating bootstrap replic-
ate samples by resampling from the model residuals
about the fit and adding these to the model-predicted
values for the observed data (e.g. Deriso et al. 1985;
Mohn 1993; Anonymous 1997a). This method
does not directly condition on the assumption of  a
particular parametric form for the residuals, but it
does condition on the assumption that the residuals
(often after some chosen transformation such as the
lognormal) are independent and identically distributed.

Adjunct Monte Carlo. Monte Carlo is a simulation
method in which the parameters of  the distributions
used to simulate replicate values are not based on
observed data, in contrast to the bootstrap. This
approach can be used as an adjunct to the delta
method or the bootstrap in circumstances where it

may be desirable to represent additional uncertainty
that is not estimable, such as that of  some input
parameters the values of  which are typically assumed
based on expert knowledge. Monte Carlo replicate
samples for parameters which are not estimated in
the assessment may be generated from a distribution
that is specified completely externally to the data or
analysis, and used as an adjunct to the bootstrap
replicate samples (Restrepo et al. 1991, 1992; Mesnil
1993a, 1995; Hanchet et al. 1998). Such applications
typically involve using random-number generators
to provide realisations from assumed distributions
and to fit complex nonlinear models to the resulting
realisations. However, where the assumed distribu-
tions are not too complex and where linear or simple
nonlinear models are in question, fuzzy arithmetic
tools (e.g. fuzzy regression) can be used to similar
ends, with some gain in simplicity and clarity (Saila
and Ferson 1998).

Although lacking a firm theoretical basis (Poole
et al. 1999), the Monte Carlo method is very flexible
and can be used to explore the consequences of
uncertainty about parameters that are normally
considered fixed when conducting assessments. For
example, variability can be introduced in natural
mortality, weights at age and future recruitments.
On completion, empirical distributions are obtained
for all quantities of  interest for management and can
be interpreted to evaluate the probability, or risk, of
relevant outcomes under the simulated regimes. The
key issue with this approach is how to condition the
analysis on appropriate probability distributions.
These can, as is the case for Bayesian approaches, be
based on expert opinion as described above.

Monte Carlo methods have been criticised (Poole
et al. 1999) because they can provide misleading
results if  the data included in the objective function
provide information on the parameters that are
assigned ‘external’ distributions (but are not updated
by the data). An example of  the latter is the use of
tagging data to estimate a growth curve which is in
turn used to generate catch-at-age data which are then
input into an ADAPT analysis. A bias will occur if  the
data used in the ADAPT analysis provided informa-
tion on the growth curve. In such cases, it is prefer-
able that all observations that are informative with
respect to the same parameters should be analysed
in a single framework. If  different parts of  the data
are analysed in separate stages, then the result of
the analysis will be unlikely to reflect the appropriate
distribution of  parameter values, because conflicts
or coincidences in the data will not be represented.
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Although examples can be constructed where
these concerns can severely bias the results, such
examples are unlikely to be common for most fish-
eries applications because it is seldom the case that
the data provide information about the quantities
assigned ‘external’ distributions in Monte Carlo
analyses (e.g. natural mortality).

Summary of  inference methods

Issues related to methods used to estimate uncer-
tainty are perhaps more general than issues related
to structural and error model conditioning or model
uncertainty. The philosophical debate about whether
parameters are random variables for which we can
discuss probability distributions or whether para-
meters are unknown ‘true’ quantities for which we
can discuss confidence distributions appears to have
little practical significance in cases where the data
are highly informative. However, in other cases infer-
ences drawn about population parameters can be
strongly dependent on the inference paradigm used
(Wade 1999). Within each inference paradigm, proper
interpretation of  statistical properties is possible. The
ability of  estimation methods associated with Bayes,
likelihood or frequentist paradigms to accommodate
the diverse conditioning requirements for fisheries
problems is, however, a relevant concern.

Frequentist and Bayesian techniques require the
practitioner to gain some expertise in order to avoid
pitfalls. Delta methods rely on parametric assump-
tions about the distributions of  parameters of  inter-
est and on linear and quadratic approximations
which may not be justifiable in some circumstances.
Bootstrap techniques depend on replicating samples
with the same properties as the original observa-
tions, sometimes a tricky matter. Accurate bootstrap
confidence statements require that measures are
taken into account for estimation bias and variance
acceleration when these are important. There is a
lack of  agreement on how to assess whether the
algorithms for computing Bayesian posteriors have
converged adequately. Elimination of  nuisance para-
meters in likelihood methods is technically difficult,
and has therefore limited their use in fisheries cases.

Application of  Bayes methods rather than frequentist
or likelihood methods can result in different estimates
of  the mean and dispersion of  the quantities of  inter-
est, because the Bayes methods allow incorporation
of  prior knowledge and beliefs into the analysis. This
is advantageous if  the introduction of  such priors has
a sound basis, but uncritical introduction of  prior

beliefs can result in unexpected effects, especially if
inferences about different quantities are drawn from
different sources when these are related through the
model or are correlated. Punt and Butterworth (2000)
describe this problem thoroughly for an instance
involving bowhead whales. A further problem, also
unique to the Bayesian approach, is the Borel para-
dox. This arises when (unintentionally) more priors
are specified than there are parameters; the result is
then a nonunique prior. For example, it may appear
plausible to represent ignorance about exploitation
rate and abundance by specifying separate, unin-
formative priors but in many assessment models the
estimates of  these parameters will be very closely
correlated, or even structurally linked. In such cases,
the result can be to introduce highly informative
priors unintentionally. Even experienced practitioners
(e.g. Raftery et al. 1995) can make this type of  mis-
take (Wolpert 1995). Overall, we stress that the speci-
fication of  a noninformative prior requires substantial
care.

Concluding this section, we offer our opinions
about some properties of  uncertainty estimation
methods that we consider desirable in general terms
as follows.

(i) The method should have known statistical
properties. Some applications of  the Monte Carlo
method may involve a number of  untested (but
plausible) assumptions, the statistical properties
of  which are unknown. In general terms, we express
our preference for the use of  statistical distributions
derived from data when attempting to quantify un-
certainty, though there is a place for the use of
arbitrary Monte Carlo distributions when exploring
robustness to the precision of  the data.

(ii) Accounting for displacement of  frequentist
confidence distributions or Bayesian posterior dis-
tributions caused by nonlinear models is probably
a desirable property. Though estimates of  bias are
routinely reported in many assessments for the North-
West Atlantic, bias-corrected confidence distributions
are not always used and assessments in other areas
often do not examine bias. Though bias-corrected and
accelerated bootstrap techniques are recommended
for routine application to obtain confidence distribu-
tions, bias correction of  point estimates requires case-
specific consideration, as the precision with which bias
is estimated can be low (Efron and Tibshirani 1993).

(iii) Accuracy of  probability coverage with respect to
the parameters of  interest is also a desirable property.
Anonymous (1999d) examined probability coverage
for nonparametric bootstraps based on ADAPT and
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found that substantial improvements in perform-
ance can be achieved by applying a bias-correction
factor. In a Bayes context, bias is less easy to interpret
and has, as yet, received little attention. Whatever
approach is chosen, we recommend that methods
should be tested to evaluate the accuracy of  prob-
ability coverage before they are used for advisory
purposes.

(iv) Some methods (e.g. delta methods) make
more restrictive conditioning on error distributions
and on variance structure than others (e.g. nonpara-
metric bootstrap). Efron and Gong (1983) point out
that the jackknife is almost a bootstrap conditioned
on a linear approximation and express the opinion
that the delta method is inferior. Comparative studies
of  the practical implications of  these assertions for
fisheries problems are limited. Gavaris (1999) found
that inferences based on analytical delta methods
diverged from results obtained with bootstrap methods,
while Sinclair and Gavaris (1996) determined that
results based on numerical delta and bootstrap
methods were largely comparable. One should prefer
methods that rely either on fewer distributional
assumptions or on those that are shown to be robust
to mis-specification of  such assumptions.

(v) For routine use, it would be preferable to
apply an approach that can be implemented quickly
and understood relatively simply. However, ease of
application should not be used as a reason to reject a
slower, more complex but more defensible approach!

Applications in example cases

Having outlined the management purposes and the
range of  conditioning assumptions associated with
structural models, error models and inference, we now
contrast the usage of  such devices in the applications
we introduced. The features for each specific applica-
tion are summarised briefly in Table 1, and an
expanded description of  these cases is provided in the
Appendix. It should be noted that while we believe
these examples are typical of  those in use in age-
structured assessments world-wide, the choices made
in their development were influenced by several
factors including the species being assessed and the
purpose for which the results were used. These
examples are drawn from a range of  data-rich situ-
ations within which the estimation of  parameters and
the estimation of  uncertainty using statistical pro-
cedures has at least the appearance of  being a tractable
proposition. Clearly these methods are inapplicable
in data-poor situations, where the greatest uncer-

tainties would be due to lack of  knowledge rather
than to any estimable uncertainty or variability.

Three applications considered only the projection
phase of  the decision problem and drew from inde-
pendent analyses for the required input. This is a
convenient approach which simplifies computation
time considerably but does not address the suitability
of  those independent analyses. Further, care must be
taken to ensure that the inputs derived from those
independent analyses are not linked, possibly giving
different results if  the analyses were completed
simultaneously in one estimation framework.

With respect to management purposes it is note-
worthy that most applications were designed to
address strategic decision issues. Only the Eastern
Georges Bank haddock case-study focused exclus-
ively on tactical decisions for setting of  annual total
allowable catch (TAC) in relation to prescribed estab-
lished reference points, while three cases were aimed
solely at exploring harvest strategies and policies.
Three of  the applications (North Sea plaice, Icelandic
cod and eastern gemfish) evaluated management
procedures to help managers formulate a harvest
rule for setting future quotas while the remaining
applications concentrated on the future implications
of  different levels of  fishing mortality. The North Sea
plaice applications that evaluated management pro-
cedures took a short cut. This involved assuming that
the process of  applying a stock assessment method to
simulated data to obtain estimates of  the age structure
of  the population can be modelled by simply assum-
ing that the estimated numbers at age are randomly
distributed about the actual numbers at age.

The structural models were quite diverse but there
were notable commonalities. Only three applications
included estimation of  M in order to capture that
source of  uncertainty. The northern hake application
attempted to capture uncertainty in M by augment-
ing the bootstrap estimation procedure with a Monte
Carlo based on an externally prescribed uniform dis-
tribution. Other applications prescribed an assumed
known constant. There was a fairly equal mix of
‘simple VPA’ and ‘separable VPA’ modelling of  F,
probably reflecting the analysts’ perceptions regard-
ing the quality of  catch sampling. Only the Bayes
random walk method departed from time-invariant
index catchability models to permit a random walk
process in these parameters. Modelling of  growth
and maturity was not incorporated in most cases,
possibly reflecting the belief  that these processes have
a second-order effect. The impact of  recruitment
modelling, especially for strategic evaluations, was
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well recognised and included in several analyses,
though diverse approaches were used to handle the
problem. Most of  the methods ignore the stock–
recruitment relationship when fitting the assess-
ment model. Instead, they assess uncertainty in the
values for the parameters of  the stock–recruitment
relationship by re-estimating the parameters of  the
stock–recruit model for each bootstrap replicate/
draw of  the variance–covariance matrix of  the para-
meters. This was probably owing to the failure of  the
data to support any parametric stock–recruitment
relationship and the associated reluctance to have
estimates of  stock status influenced by such condi-
tioning. Only the study on Norwegian spring-spawning
herring explicitly considers model-structure uncertainty
by placing priors on different stock–recruitment
relationships. The Icelandic cod example is unique
among the examples considered because account
was taken in this case of  multispecies impacts. Only
two cases allowed for error in the total reported
catches: for West Scotland herring by including addi-
tional misreporting parameters in the estimation,
and for eastern gemfish by exploring two alternative
time series of  catch. The admission of  error in the
catch at age was associated with the use of  ‘simple
VPA’ or ‘separable VPA’ structural models and, as indi-
cated earlier, probably reflected beliefs about the
quality of  catch sampling. Indices were most often
assumed lognormal or, for nonparametric methods,
independent and identically distributed on the log
scale, about the model. The Norwegian spring-
spawning application attempted to use information
in the data to choose between Gaussian, lognormal
and gamma distributions during optimisation. Vari-
ances for different data sources were most often
assigned, though there were some attempts at esti-
mation. Error in weight and maturity were typically
not admitted, corresponding to the absence of  mod-
elling for these processes.

While many cases were typified by a dominant
method of  estimating uncertainty, generally associated
with the method used for the uncertainty in popula-
tion abundance, these methods were often augmented
by different techniques for other sources of  uncer-
tainty. This was particularly the case for frequentist
approaches. Only the Eastern Georges Bank haddock
application considered adjustment for estimation bias.

From this comparison of  case-studies, it is clear
that although they are designed for generally similar
purposes, to provide managers with statements about
the probability of  various outcomes of  alternative
management actions, there is a large variety in the

conditioning assumptions used. We have identified a
large number of  issues for which conditioning assump-
tions must be made when estimating uncertainty in
fish stock assessments and forecasts. Some of  these
have a direct biological significance whilst others are
implicit in the detail of  the statistical methodology
used. In some cases, we have been able to identify
cases where assessment results have been shown to
be highly sensitive to conditioning assumptions. In
many other cases the sensitivity of  assessments
and corresponding uncertainty estimates to different
conditioning choices is not documented or remains
unknown.

It is difficult to draw general conclusions about the
extent to which the conditioning used in real appli-
cations has been appropriate because conditioning is
highly specific to species and management purpose.
Nevertheless, there are some cases in which the
estimated uncertainty has clearly been unduly under-
represented owing to inappropriate conditioning. For
example, for North Sea herring (Anonymous 1998)
there is clearly quite a good deal of  uncertainty
related to different perceptions of  stock size indicated
by different index series, with fishing mortality in the
range 0.1–0.7 depending on ascribed variances for
the various indices. More dramatically, for Norwegian
spring-spawning herring, structural uncertainty
about the stock–recruitment model indicated a range
of  stock sizes from 2.3 million to 12.08 million
tonnes (Anonymous 1997b). However, the estimates
provided to the managers did not convey the full
range of  uncertainty in these cases. One may add
that in two cases commonly viewed as significant
failures to forecast the development of  fisheries,
Peruvian anchovy (Csirke 1988) and northern cod
(e.g. Myers et al. 1997), failure to consider the full
uncertainty by relaxing inappropriate conditioning
can be viewed as a contributing factor.

Discussion

Provision of  uncertainty estimates for management
advice in fisheries is a relatively young science, with
few examples to be found before the introduction of
such practices at the International Whaling Com-
mission in the early 1980s (e.g. Beddington and
Cooke 1981; Kirkwood 1981). The earliest of  the
age-structured fish stock assessment examples we
consider in detail was due to Restrepo et al. (1991).
Since then, many methods have been developed for more
or less similar purposes, and estimates of  uncertainty
based on these have been used for management
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Table 1 Summary of  the principal characteristics of  some specific applications of  uncertainty estimation methods. M, natural mortality; F, fishing mortality.

Assessment and projection Projection only

Northern 
hake

Norwegian 
spring-spawn 
herring

West 
Scotland 
herring

North 
Sea plaice 1

Bayes 
random walk

Georges 
Bank 
haddock

Eastern 
gemfish

North 
Sea herring

North 
Sea herring

North 
Sea cod

Icelandic 
cod

Management 
purpose

Strategic Strategic Tactical and 
strategic

Strategic Tactical 2 Tactical Tactical and 
strategic

Strategic Strategic Strategic Strategic

Structural model
M Prescribed 

uniform 
distribution

Estimated Prescribed 
constant

Prescribed 
constant

Estimated Prescribed 
constant

Estimated Prescribed 
constant

Prescribed 
constant

Prescribed 
constant

Prescribed 
dynamic

F Determined 
by catch; 
constrained 
at oldest age

Determined 
by catch; 
constrained 
at oldest age

Separable Determined 
by catch

Separable 
(in expectation)

Determined 
by catch; 
constrained 
at oldest age

Separable Separable Determined 
by catch

Determined 
by catch

Determined 
by catch

Catchability Time- 
invariant 
by index 
and age

Time- 
invariant 
by index 
and age

Time- 
invariant 
by index 
and age

Time- 
invariant 
by index 
and age; 
constrained 
at oldest age

Random 
walk 
by index 
and age

Time- 
invariant 
by index 
and age

Time-
invariant 
by index 
and length

Time- 
invariant 
by index 
and age

N/A Time- 
invariant 
by index 
and age; 
constrained 
at oldest age

N/A

Growth and 
maturity

Time- 
invariant

Not modelled Not modelled Not modelled Not modelled Not modelled Prescribed 
growth 
parameters; 
estimated 
maturity ogive

Not modelled Time-
invariant

Not modelled Modelled as
stochastic 
increments

Recruitment S–R estimated Optimised Not modelled Not modelled Not modelled Not modelled S–R estimated S–R estimated S–R estimated S–R estimated S–R estimated
after 
assessment; 
Ricker model

over 
Beverton–Holt 
and Ricker 
models

in 
assessment; 
specified 
model form

in 
assessment; 
specified 
model form

after 
assessment; 
Beverton–
Holt model

after 
assessment; 
specified 
model form

after 
assessment; 
specified 
model form

Ecosystem Not modelled Not modelled Not modelled Not modelled Not modelled Not modelled Not modelled Not modelled Not modelled Not modelled Inter- and 
intra-species 
interactions

1 Description of the assessment model, the operating model was different. 2 Not yet implemented. 3 Estimation assumes no error but replicates are simulated with error.
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Error model
Total catch No error No error Uniform 

prior for 
misreporting 
multiplier

No error No error No error Two fixed 
catch series

No error No error No error No error

Catch-
at-age

No error 3 No error Lognormal No error Multivariate 
normal

No error Lognormal Lognormal No error No error No error

Indices Lognormal Poisson (tags); 
optimised over 
Gaussian, 
lognormal 
and gamma

Lognormal Lid, on 
log scale, 
about model

Multivariate 
normal

Lid, on 
log scale, 
about model

Lognormal Lognormal N/A N/A N/A

Variances Assigned 
equal

Assigned 
equal

Assigned 
equal

Iterative re-
weighting

Estimated Assigned 
equal

Assigned Assigned 
equal

N/A N/A N/A

Weight and 
maturity

No error No error No error No error No error No error No error 
(weights); 
uniform priors 
for L50 and Lfull 
(maturity)

No error N/A No error Modelled as 
stochastic 
increments

Estimation Parametric 
bootstrap for 
population 
augmented by 
Monte Carlo 
for M, non- 
parametric 
residual 
bootstrap 
for S–R, 
resample 
observations 
for weight 
and maturity

Bayes 
MCMC

Bayes 
MCMC

Non-
parametric 
bootstrap for 
population 
augmented by 
Monte Carlo 
for other 
parameters

Bayes MCMC Analytical 
shifted delta; 
non-
parametric 
residual 
bootstrap, 
bias 
corrected

Bayes SIR for 
population 
augmented by 
parametric 
residual 
bootstrap 
for S–R 
projections

Numerical 
delta for 
population 
augmented by 
nonparametric 
residual 
bootstrap 
for S–R 
projections

Numerical 
delta for 
population 
augmented by 
nonparametric
residual 
bootstrap for 
S–R 
projections, 
resample 
observations 
by year for 
weight and 
maturity

Numerical 
delta for 
population 
augmented by 
nonparametric 
residual 
bootstrap for 
S–R 
projections

Numerical 
delta for 
population 
augmented by 
Monte Carlo 
for other 
parameters

Assessment and projection Projection only

Northern 
hake

Norwegian 
spring-spawn 
herring

West 
Scotland 
herring

North 
Sea plaice 1

Bayes 
random walk

Georges 
Bank 
haddock

Eastern 
gemfish

North 
Sea herring

North 
Sea herring

North 
Sea cod

Icelandic 
cod

1 Description of the assessment model, the operating model was different. 2 Not yet implemented. 3 Estimation assumes no error but replicates are simulated with error.

Table 1 continued
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decisions. We have shown that there is considerable
subjective and case-specific tailoring of  population
dynamics models in terms, for example, model
structure, catchability constraints and variance
constraints. Furthermore, a large number of  choices
are made about which parameters or observations
are to be admitted as uncertain, and how to deal with
this uncertainty. There is not any obvious consensus
in the scientific community as to how these choices
should be made.

This is perhaps because relatively little testing of  the
applications and their assumptions has been reported
in the literature. One notable exception is Anonymous
(1999d), in which the accuracy of  probability cover-
age of  bias-corrected ADAPT nonparametric boot-
straps is examined. There is therefore little basis
either for assessing the performance of  the methods,
or for advocating any particular standardisation.

We would wish to consider, in the face of  this
untested methodological diversity, whether all,
some, or any of  the methods provide managers with
probability statements that reflect the probabilities of
the eventual real outcomes of  the management
action they evaluate. Although we acknowledge that
constraints of  time and manpower mean that assess-
ments of  risk are necessarily less thorough than
would be desired, we contend that ultimately uncer-
tainty estimation techniques should meet four criteria.
First, the method should be properly conditioned, i.e.
it should only take as axiomatic assumptions which
either have a very low probability of  being wrong or
for which any mis-specification has very little con-
sequence. Second, the distributional assumptions
made about parameters or data admitted as uncer-
tain should be validated. Third, if  there remain
significant uncertainties due to alternative model
structures or alternative conditioning choices being
perceived as having high probability, then such
uncertainties should be transmitted clearly. Lastly,
we stress that the conditioning decisions should dic-
tate the estimation method, rather than institutional
convention or use of  standard software.

We have stated a preference for ‘properly condi-
tioned’ models. In practice it is often the case that a
fairly wide range of  structural models, often with
very different consequences for management, may
appear to represent the data almost equally well, and
an ideal of  proper conditioning is not often attain-
able. This may also be the case for some particular
parameters—that is, a wide range of  values for a
parameter, such as M, represent the data almost
equally well but have very different consequences. In

such cases of  indeterminacy, it is most important
that uncertainty due to model structure should be
presented in an interpretable form. One approach is
to construct probability distributions using a number
of  structural models, weighted according to some
‘prior’ belief  or posterior perception about the validity
of  each (e.g. Schnute and Hilborn 1993; Adkinson
and Peterman 1996; Patterson 1999). These ‘model-
averaging’ approaches allow a number of  alternative
model choices to be admitted as plausible hypo-
theses, yet allow provision of  advice in the traditional
form of  expected values and associated probability
distributions (Draper 1995). An alternative is the
consideration of  many (possibly radically different)
models by evaluation of  management procedures
(e.g. Anonymous 1994c; Punt and Smith 1999). For
example, in their evaluation of  the impact of  seal
culls on harvest levels of  Cape hake, Punt and
Butterworth (1995) found that the choice concern-
ing which species to include in an overall ecosystem
model had a much greater impact on the final con-
clusions than the uncertainty about a single eco-
system model. When the data are not informative
about a parameter or structural model, care should
be taken to ensure that optimisation is not influenced
by peculiarities in the data which would result in
spurious estimates. The topic of  model averaging is
familiar to those working with Bayesian methods
and is beginning to receive attention among those
favouring frequentist methods (Buckland et al. 1997).
For a full appreciation of  uncertainties, however, it
may also be useful to consider the consequences
of  adopting an extreme case when another case may
be true.

Unfortunately, examining alternative models for
strategic decisions is uncommon. However, such
examinations do seem to be on the increase as
witnessed by the fact that three of  the applications in
Table 1 (those to Norwegian spring-spawning her-
ring, eastern gemfish and Icelandic cod) made some
attempt to do this. There are probably several reasons
for not considering model uncertainty, ranging from
the computational aspects of  developing and fitting
different models, and lack of  qualified personnel, to
(unfortunately) institutional barriers. An arguably
even greater problem is the common practice of  ignor-
ing the possibility of  several competing models once
a single (commonly used) model appears to fit the
available data adequately. Much effort in stock
assessment is expended in attempting to identify the
‘best’ assessment model and then to condition advice
on that choice. In many cases, robust identification
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of  a definitive model proves difficult. It would be more
productive to explore the consequences of  plausible
alternative model choices and to present estimates of
uncertainty for management purposes that reflect
this uncertainty in appropriate conditioning.

The presentation of  advice to managers that
takes into account uncertainty in appropriate con-
ditioning choices is not straightforward. Possibilities
include the model-averaging approaches mentioned
above, but Hilborn and Walters (1992) and Hilborn
et al. (1993) advocate making such uncertainty
explicit in the form of  a decision table (Table 2),
which is an intuitively attractive solution. However,
the task of  attaching probabilities to alternative
conditioning choices is not a trivial one, and indeed
may be computable only in certain specific cases.
Expert opinions, plausibly formulated as Bayes priors,
may be of  help in such instances. Nevertheless, the
approach has not been adopted widely, even though
it was proposed for fisheries purposes some 8 years
ago. Examples include applications to orange roughy
off  Namibia (McAllister, personal communication),
coastal sharks off  USA (McAllister and Pikitch, in
press) and hoki off  New Zealand (Punt et al. 1994).
This may be in part because scientific advice pre-
sented in this form is considerably harder for man-
agement agencies to interpret. Indeed, in cases where
there are many users of  such advice with different
sectoral objectives, the possibility of  conflicting
interpretations of  such a decision table may make
its application unfeasible. Model-averaging methods
may be preferable in such situations, but some would
argue that the difficulties of  effectively conveying the
uncertainty about conditioning choices in a manner
that supports practical decision making is a signi-
ficant incentive for the continued prevalence of

seeking the ‘best’ assessment. For example, attempts
to reflect uncertainty in structural conditioning
(Anonymous 1999e) can lead to lack of  credibility in
the scientific analyses (Anonymous 2000b).

The ability to conduct the evaluations needed to
quantify the uncertainty associated with assessments
and forecasts has increased rapidly in recent years.
The challenge of  computational power is close to
being overcome. However, with the technical aspects
less of  a concern, increased attention must be given
to being more careful in testing and selecting the
assumptions underlying assessments and to examining
whether these sophisticated methods of  quantifying
uncertainty are able to deliver what they promise.

Making confidence statements that adequately
represent the probabilities of  eventual real out-
comes is the ultimate goal. One should ideally wish
to know how well the methods now in use do
serve to represent these eventual, real probabilities.
In principle, one may test the performance of  an
uncertainty estimation using simulations in which no
mis-specification of  conditioning is incorporated.
This allows evaluation of  the performance of  the
estimators used and the quality of  the associated
estimates of  bias, probability coverage and accuracy of
confidence statements. Simulation experiments can
also be extended to investigate the sensitivity of  con-
fidence statements to alternative mis-specifications of
conditioning choices, which may provide information
about the robustness of  such statements and the
robustness of  alternative harvesting rules.

However, a useful test of  such confidence state-
ments would be a comparison of  the confidence
statements with the eventual distribution of  real
outcomes. Within specific stocks, evaluation of  the
appropriateness of  conditioning choices is likely to

Table 2 Example decision table (adapted from Hilborn et al. 1993): expected average yields for three possible states of  nature
and four possible actions.

Expected average yield over 5 years (in thousands of tonnes) at given virgin 
biomasses (and probabilities) 

Policy 0.9 Mt (0.57) 1.5 Mt (0.4) 2.1 Mt (0.03) Expected value

150 Kt constant quota 136 150 150 148
150 Kt quota in 1993; 39% harvest rate thereafter 137 186 202 168
200 Kt quota in 1993; 39% harvest rate thereafter 138 194 216 173
200 Kt quota in 1993; 26% harvest rate thereafter 122 154 166 141

Kt, kilotonnes; Mt, million tonnes. This shows the expected average yield over a 5-year time horizon (in thousands of tonnes) for three 
possible states of nature and four possible actions. The possible states of nature (corresponding to plausible alternative conditioning 
choices) are virgin biomasses of 0.9, 1.5 and 2.1 Mt with probabilities of 0.57, 0.40 and 0.03, respectively. The possible actions include 
constant quotas or specific quotas in 1993 followed by harvest rates.
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be a lengthy process of  trial and error, as forecast
distributions are compared with eventual outcomes
on an annual basis. It may be possible, however, to
draw general conclusions from a comparison of  con-
fidence statements and eventual outcomes across
many stocks.

We conclude that despite much recent progress,
fisheries science has yet to identify a means for iden-
tifying appropriate conditioning choices such that
the probability distributions which are calculated for
management purposes do adequately represent the
probabilities of  eventual real outcomes. We consider
that where estimates are sensitive to conditioning
choices, the task of  communicating uncertainty to
fisheries managers is not accomplished adequately
by providing a simple estimate of  variance or a risk
threshold based on such an estimate. In order to
complete such a task a thorough exploration of  the
various conditioning choices and their consequences
will be required. Although provision of  fisheries
advice with estimates of  uncertainty is a clear goal,
there are obvious pitfalls in providing incomplete
estimates of  uncertainty. Provision of  incomplete
uncertainty estimates is likely to result in the even-
tual occurrence of  events outside the range of  those
that had been foreseen in the scientific advice, which
will cause a loss of  credibility in the uncertainty
estimates and in the associated point estimates. In
cases where important model uncertainties exist,
management procedure simulations can be used to
help identify decision rules that are robust to such
uncertainty. Decision tables and model averaging may
prove to be useful additional tools for the presentation
of  a more complete view of  the uncertainties relevant
for management purposes, but they have not yet
achieved general acceptance. We recommend greater
efforts to use and promote such approaches.
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Appendix

This section provides background on the case-studies
summarised in Table 1. We discuss some recent
examples of  uncertainty-estimation procedures that
have been used in the provision of  management
advice for: cod (Gadus morhua, Gadidae) in the North
Sea and around Iceland, hake (Merluccius merluccius,
Merluccidae) in the North-East Atlantic, herring
(Clupea harengus, Clupeidae) in the North Sea—to the
West of  Scotland and in the Norwegian Sea (Norwegian
spring-spawning stock), plaice (Pleuronectes platessa,
Pleuronectidae) in the North Sea, haddock (Melano-
grammus aeglefinus, Gadidae) on the Eastern Georges
Bank and gemfish (Rexea solandri, Gempylidae) off
Eastern Australia.

North Sea cod

Up until the early 1990s, ICES advice concentrated
almost entirely on short-term forecasts of  stock size
with ‘target’ fishing mortality rates indicated in rela-
tion to yield-per-recruit criteria. While stocks fluctuated
with no obvious sign of  serious decline, managers
were inclined to choose TACs which allowed fishing
mortality to continue at status quo values which
often exceeded the yield-per-recruit criteria. With
the decline in many stocks, tools were needed to
assist in the choice of  fishing mortality rates which
were likely to result in stock increases above biomass
thresholds within a chosen time frame. The tool
described here was first used for North Sea demersal
stocks in 1993 (Anonymous 1993).

WGMTERM was a simple tool designed as an add-
on to the basic catch-at-age analysis in the stock
assessment. Given that the majority of  assessments
used XSA (Darby and Flatman 1994), the program
uses population estimates from that output and
projects these forward for a number of  years at a fixed
mortality rate. Recruitment is generated from a stock
recruitment function fitted to the XSA estimates of
stock and recruitment. Uncertainty is included in
the recruitment model and in the initial population
sizes. Recruitment is modelled by one of  three standard
functions, Beverton–Holt, Shepherd and Ricker, and
may, if  desired, include a first-order autocorrelation
in the residuals.

The annual reports from the ICES Advisory Com-
mittee on Fisheries Management (ACFM) contain
a table of  catch forecast options for a set of  fishing
mortality rates requested by managers. For each
fishing mortality option, ACFM gives a medium-term
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impact statement of  the type ‘low probability of
spawning stock biomass falling outside precautionary
limit’. Many of  these impact statements are taken
from the analysis described above. These statements
influence the manager’s choice of  catch limit. Thus,
though the analysis is of  a strategic type, it has an
impact on decisions about immediate measures.

Northern hake

Another early development was a technique which
augmented parametric bootstrapping of  observed
data with Monte Carlo simulation of  ‘inestimable’
parameters. It was intended to guide managers away
from simple point estimates into probabilistic estim-
ates that would reflect the analyst’s perception of
variability in all the inputs used for the analyses. The
approach was initially aimed at estimating the un-
certainty of  current stock status and decisions about
tactics such as quotas but was extended to include
evaluation of  strategies based on medium-term pro-
jections. The method first proposed by Powers and
Restrepo (1992) and Restrepo et al. (1992) was adapted
to suit ICES practice with several extensions (Mesnil
1993a, 1995). Results for northern hake (Mesnil
1993b) were considered a suitable basis for advice by
the ACFM.

Norwegian spring-spawning herring

The assessment of  Norwegian spring-spawning her-
ring has been perceived as highly problematic in that
(i) there exist relatively few observations and those
are of  a rather imprecise nature, and (ii) there is also
substantial perceived uncertainty as to the appropri-
ate form of  assessment model that should be used.
This is largely because the stock has been at an
extremely low level for some decades (during which
time few observations could be gathered) and it sub-
sequently recovered to an extremely high level after
the recruitment of  a few highly abundant year classes.
A Bayesian form of  assessment was introduced by
Anonymous (1997b) in order to admit perceived
uncertainty in natural mortality and model uncer-
tainty about the most appropriate assumption
concerning error distributions and the appropriate
structural form of  stock-recruitment model (Patterson
1999). This approach was used to explore strategic
issues associated with policies of  constant exploita-
tion rate or harvest-control rules. Catch forecasts for
decisions about immediate management measures
can also be obtained.

West Scotland herring

A ‘separable’ VPA structural model was used in an
attempt to quantify the uncertainty introduced by
uncertainty in catch reporting levels. A multiplier on
the reported catches is added as an additional parameter
(with a uniform prior distribution the range of  which
encompasses credulity). Catch-at-age observations
are assumed distributed according to the product of  the
true catch, the uniform misreporting error multiplier
and a lognormal sampling error. Results of  the West
Scotland herring assessment have been presented in
Anonymous (1998) for management purposes, as
percentiles of  the historic stock parameters, short-
term catch options and medium-term projections.
These results were used to decide that the assessment
calculation was too uncertain to form the basis of
advice and to defer the management decision until
more recent survey information had become available.

North Sea herring

Two different techniques have been applied for this
stock. One approach is grounded on assuming a
‘separable’ VPA assessment model, making an assump-
tion of  lognormal errors in the observations and
assuming that the fitted population abundance
parameters conform to a multivariate lognormal dis-
tribution. This method has been used in a variety of
forms for North Sea herring uncertainty estimation
in tactical TAC decisions and (with the inclusion of
a Beverton–Holt stock–recruitment relationship) in
strategic medium- and long-term management advice
(Anonymous 1998). The other approach is a projec-
tion simulation designed specifically to investigate
strategic issues regarding selection of  an optimal
harvest control rule (Skagen 1999). The contempor-
ary state of  the stock is taken from the latest assess-
ment working group results, also assuming that the
population abundance estimates conform to a multi-
variate lognormal distribution.

North Sea plaice

Management procedures are investigated using a
simulation model. An operating model represents
reality, a perception of  which is gained using an
assessment based on data sampled from the operat-
ing model. The model structure includes sampling,
process and implementation errors, as well as the
effect of  feedback from management controls to the
operating model. The evaluation of  policies is
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performed in the context of  the entire management
procedure, that is, in the context of  the particular
combination of  assessment technique, control rule
and implementation. The results should not be
viewed as providing predictions but should be regarded
as a means for comparing performance of  alternative
management procedures. Thus, this approach is
suitable for investigations of  the strategic type. The
approach has been applied illustratively to North Sea
plaice (Kell et al. 1999).

Bayes random walk

Dissatisfaction with the performance of  traditional
index catchability models has prompted the develop-
ment of  approaches where catchability is assumed to
be autocorrelated over time. The implementation
considered here (Lewy 1999) applies a simple random
walk model for each index by age group. The expected
value of  catchability is assumed constant while realised
catchabilities are permitted to vary over time. This
approach is developed within a Bayesian estimation
framework.

Icelandic cod

Changes in inter- and intra-specific interactions in
response to variations in stock status may have pro-
found implications for analyses of  harvest strategies
and policies. In most instances there is not sufficient
information to model these interactions and the
processes are assumed stationary. One exception is
the development from a single-species model for Ice-
landic cod to an eight-species model with economic
concerns included (Stefánsson and Baldursson
1998). Results from these models have been used as
the basis for decisions of  the strategic type regarding
the adoption of  harvest control rules ( Jakobsson and
Stefánsson 1999).

Eastern Georges Bank haddock

There has been a recent evolution in Atlantic Canada
away from basing annual TAC decisions on point
estimates towards basing them on confidence distri-
butions. The role of  the scientific advice is to provide
quantitative information on the risk that established
reference points for parameters of  interest, such as
exploitation rate, might be exceeded for alternative
TAC options. Strategic or policy decisions regarding
the establishment of  reference points are considered
linked but more involved and independent exercises

which are undertaken only periodically, while tactical
decisions need to be made regularly. Reference points
might be defined conceptually, requiring them to be
estimated within the assessment process, but this
has not occurred to date and reference points are
prescribed externally. The development of  tools to
quantify uncertainty for tactical decisions was char-
acterised by analytical methods initially (Gavaris and
Van Eeckhaute 1997), while bootstrap techniques are
dominant at present (Gavaris and Van Eeckhaute
1998). For the short-term projections required to
make tactical decisions, it was considered that the most
important source of  uncertainty was uncertainty
about the contemporary population abundance. Study
to date has focused on capturing that uncertainty, with
less attention given to other sources of  uncertainty.

Eastern gemfish

Stock assessment for fisheries management in
Australia aims towards extensive evaluation of  manage-
ment procedures. The aim of  each Fishery Assess-
ment Group is to conduct assessments and provide
advice on the benefits of  alternative management
procedures. To accomplish this, an underlying operat-
ing model capable of  generating future observations
and representing alternative hypotheses about the
dynamics of  the resource is developed. The modelling
is often conducted within a Bayesian framework to
permit integration of  ‘prior’ information based on
either data for other species or expert opinion.
Results provided to managers fall into three cat-
egories: (i) model parameters, e.g. virgin biomass,
M, maximum sustainable yield (MSY), (ii) historical
trajectories for recruitment and biomass and (iii)
the probability of  exceeding target or limit reference
points for alternative management procedures. These
management procedures range from full feedback-
control approaches to sequences of  fixed levels of
TAC. These results are used to make decisions about
strategies and to select immediate management
measures such as TACs. The assessment of  eastern
gemfish (Smith and Punt 1998) is amongst the most
advanced in Australia. It includes a wide range of
alternative models and data types and has formed
the basis for a formal evaluation of  management
procedures (Punt and Smith 1999).
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