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Abstract

Informative data in fisheries stock assessment are those that lead to accurate

estimates of abundance and reference points. In practice, the accuracy of estimated

abundance is unknown and it is often unclear which features of the data make them

informative or uninformative. Neither is it obvious which model assumptions will

improve estimation performance, given a particular data set. In this simulation study,

10 hypotheses are addressed using multiple scenarios, estimation models, and

reference points. The simulated data scenarios all share the same biological and fleet

characteristics, but vary in terms of the fishing history. The estimation models are

based on a common statistical catch-at-age framework, but estimate different

parameters and have different parts of the data available to them. Among the findings

is that a ‘one-way trip’ scenario, where harvest rate gradually increases while

abundance decreases, proved no less informative than a contrasted catch history.

Models that excluded either abundance index or catch at age performed surprisingly

well, compared to models that included both data types. Natural mortality rate, M,

was estimated with some reliability when age-composition data were available from

before major catches were removed. Stock-recruitment steepness, h, was estimated

with some reliability when abundance-index or age-composition data were available

from years of very low abundance. Understanding what makes fisheries data

informative or uninformative enables scientists to identify fisheries for which stock

assessment models are likely to be biased or imprecise. Managers can also benefit from

guidelines on how to distribute funding and manpower among different data

collection programmes to gather the most information.
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Introduction

Stock assessment and informative data

Fisheries management relies on stock assessment

models to provide estimates of population abun-

dance, and to shed light on the underlying dynam-

ics of the resources being managed. It is necessary

to quantify and understand the uncertainty about

model parameters and reference points to evaluate

the consequences of alternative management

actions. The uncertainty about estimated quantities

reflects the information contained in the available

data, but also depends on the choice of model and

implicit assumptions that are made when the

assessment is conducted. Despite theoretical and

practical advances in the field of stock assessment,

our ability to answer some key questions remains

limited. This study focuses on one such question:

What kinds of data are particularly informative in

stock assessments, and how is this influenced by

model assumptions?

Understanding what makes fisheries data infor-

mative or uninformative has obvious value for

fisheries management, enabling us to identify fisher-

ies for which stock assessment models are likely to be

biased or imprecise. Managers can also benefit from

guidelines on how to distribute funding and man-

power among different data collection programmes

to gather the most information. Moreover, adaptive

management decisions can be taken today to make

future data as informative as possible (Ludwig and

Hilborn 1983; Walters 1986; Walters 2007).

Shepherd (1984) ranked types of fisheries data in

terms of potential information provided by each type

of data in isolation. Annual landings and age-specific

abundance indices were ranked the highest, for

example, while age-composition data alone was

assigned a low score. Such statements are of course

highly generalized, but nevertheless provide useful

guidelines for planning data collection programmes.

Shepherd (1984) also points out how different data

types complement each other: landings provide

information about the absolute scale of the fishery,

age-composition data about the relative cohort size,

and abundance-index data about the relative

changes in abundance over time. Changes in growth

or maturity can provide some information about

changes in population density, confounded with

other ecological and evolutionary factors (Rose et al.

2001). Less commonly used data types that provide

information about stock status include tag recover-

ies and egg/larval surveys. In a Bayesian context,

any prior information about estimated or derived

parameters can also be seen as a type of data source

(Gelman et al. 2004), where information from pre-

vious studies is expressed in the form of a probability

distribution for estimated or derived parameters.
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Many non-Bayesian estimation methods assume

that specific parameters are known without error;

the effect of such assumptions is similar to that of a

highly informative Bayesian prior.

The general rule in statistical inference is that

more data leads to less uncertainty. But other

features of the data also play a role, e.g. the range of

observed values and temporal patterns in time-series

data. This is easy to show analytically for simple

stock assessment techniques, such as depletion

models and catch-curve analysis, as outlined below.

When more complex models are used, it becomes

less concrete what is meant when stock assessment

modellers discuss the ‘informative’ data in a partic-

ular assessment, or perhaps more often, ‘uninfor-

mative’ data.

Before taking a closer look at what kinds of data

are informative for a given model, it is helpful to

begin with an overview of some commonly used

models.

Models and assumptions in stock assessment

A variety of stock assessment models have been

developed, as reviewed by Megrey (1989), Hilborn

and Walters (1992), Quinn and Deriso (1999),

Quinn (2003) and Smith and Addison (2003). This

variety of models reflects the diversity of fisheries to

which stock assessment techniques need to be

applied, the data available for assessment purposes,

and what is known or assumed about the fishery

dynamics and stocks. There has been a move away

from simple and restrictive assumptions (Schaefer

1954; Chapman and Robson 1960; Gulland 1965)

towards more flexible models that incorporate all of

the available data in a likelihood-based statistical

framework.

A depletion model (Leslie and Davis 1939) can be

used to estimate absolute abundance from a time

series of landings and an index of relative abun-

dance when a stock is fished down. Assuming a

closed population where the impact of fishing

mortality is much greater than those of recruit-

ment, growth, and natural mortality, the biomass

at the start of time step t + 1 equals the biomass at

the start of time step t less the catch during time

step t, that is Bt+1 ¼ Bt)Yt, and the abundance

index is proportional to the stock biomass, It ¼ qBt.

The catchability coefficient, q, is assumed to be

constant, although empirical data suggest that may

not always be a justifiable assumption (Ricker

1958). The Schaefer (1954) biomass-dynamic

model adds two parameters representing the maxi-

mum growth rate and carrying capacity, Bt+1 ¼
Bt + rBt(1)Bt/k) ) Yt. When r ¼0, it is identical to

the depletion model. A slightly different approach is

taken in the Kimura and Tagart (1982) stock-

reduction model, where two parameters represent

the natural mortality rate and recruitment, Bt+1 ¼
Bte

)(Ft+M) + R. The fishing mortality rate Ft is

evaluated from the landings, Yt ¼Bt(1)e)Ft)M)Ft/

(Ft + M). As the above models do not distinguish

between age groups, they can be formulated either

in terms of numbers or biomass.

In catch-curve analysis (Chapman and Robson

1960), the total mortality rate of fully recruited fish

in a given year can be estimated using the catch-at-

age composition, assuming that recruitment vari-

ability is inconsequential. Catch curves can also be

applied to individual cohorts (Hilborn and Walters

1992), relaxing the assumption that recruitment is

the same across cohorts, Nt+1,a+1 ¼ Nt,ae)(Ft+M). In

practice, M is often assumed to be known, and F can

in turn be used to estimate absolute abundance if

the annual landings are known. Related models

include virtual population analysis (Gulland 1965),

cohort analysis (Pope 1972), adaptive framework

(Gavaris 1988) and extended survivors analysis

(Shepherd 1999). The assumption of a known

constant M is frequently challenged (Cotter et al.

2004), but restrictive assumptions about M and

recruitment are often necessary to evaluate the

consequences of alternative catch levels (Punt and

Hilborn 1997). Even in fisheries where large quan-

tities of data have been collected for decades, an age-

structured assessment model can fit the data equally

well when M is fixed at a very low value or a high

value (Gavaris and Ianelli 2002).

The forward-projecting statistical catch-at-age

model (Fournier and Archibald 1982; Deriso et al.

1985; Methot 1989) can be described conceptually

as a stock-reduction model with variable recruit-

ment, combined with catch-curve analysis of multi-

ple cohorts. The basic framework can be tailored

fairly easily to the specifics of the fishery to be

modelled. The data types most commonly included

in statistical catch-at-age analysis are: annual

landed catch, catch at age and an index of relative

abundance. The landed catch is often assumed to be

measured without error, and model parameters are

estimated by minimizing the difference between

model predictions and the observed catch at age

and abundance index. A statistical catch-at-age

model can be fitted without any age data (Hilborn
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1990) or without an index of abundance. However,

Deriso et al. (1985) concluded that all three data

types are required to estimate abundance and

reference points reliably. Hilborn et al. (2003)

describe how statistical catch-at-age models can

incorporate sex-specific data from multiple fisheries

with ageing error, catch-at-length data, and allow

certain parameters to vary over time.

Parameters that are almost always estimated

when fitting a statistical catch-at-age model include

the age-structure of the population in the first year

considered in the model, the selectivity curve for

each fishery, the catchability coefficient for each

abundance index and the annual recruitment. There

remain, however, many decisions to fully specify a

statistical catch-at-age model. For example, whether

to estimate or fix the natural mortality rate M, how

to model the relationship between spawning stock

size and recruitment, whether to parametrize selec-

tivity using an asymptotic or dome-shaped curve,

and how to choose which parameters vary over time

(Patterson et al. 2001; Gavaris and Ianelli 2002).

M can be accurately estimated if the data include the

catch age composition from a nearly unfished

population, or if fishing effort is kept very low for

some years (Beverton and Holt 1957), while the

shape of the stock-recruitment curve can be esti-

mated only if there is considerable contrast in stock

size (Ricker 1958). Analysing a model that estimates

M and right-hand selectivity, i.e. a shape parameter

determining the selectivity of older age classes,

Thompson (1994) noted that those parameters were

confounded and recommended fixing either M or the

selectivity shape parameter at an assumed value.

The simpler models (depletion, catch curves) can

be emulated fairly adequately using statistical

catch-at-age models, by fixing parameters, selecting

specific functional forms for biological relationships,

or excluding likelihood components from the objec-

tive function. The main difference between the

depletion, biomass-dynamic, stock-reduction and

delay-difference models is how recruitment, somatic

growth and natural mortalities are handled. Sch-

nute (1985) showed how the Schaefer (1954)

biomass-dynamic model, the Deriso (1980) delay-

difference model and Kimura and Tagart (1982)

stock-reduction model are special cases of a gener-

alized catch-effort model. Xiao (2000) showed

further that the above models, along with the Leslie

and Davis (1939) depletion model, Gulland’s (1965)

virtual population analysis and Fournier and Archi-

bald’s (1982) statistical catch-at-age models are all

special cases of a generalized age-structured model.

In light of their flexibility, superior performance

(NRC 1998; Punt et al. 2002), and increasing

usage, statistical catch-at-age models are used in

this study to address the questions of interest.

Simulation studies and informative data scenarios

The term data scenario is used here to denote

temporal patterns found in the data, regardless of

the amount and types of data. These temporal

patterns are impacted by how the fishery has been

conducted historically, e.g. whether fishing effort

and landings have been increasing or decreasing,

held relatively steady, or perhaps the stock might be

rebuilding after heavy depletion. One of the ques-

tions confronted in this study is which data scenar-

ios are more informative than others.

A data scenario is informative when it enables a

given model to estimate the status of a fishery with

greater accuracy than most other data scenarios

would. In the real world, a data scenario can be said

to be informative if it resembles a scenario that has

been shown to be informative, either analytically or

in a simulation study. Analytical demonstration is

only viable for the simplest of models, such as linear

regression, but for more complex models, simula-

tions are used to evaluate estimation accuracy.

Simulation studies use an ‘operating’ model to

generate artificial data similar to those used in

stock assessment, except the true population param-

eters are known.

The depletion model can be expressed as a linear

regression with the abundance index as the

response variable and accumulated catch as the

predictor, Ît ¼ qBinit � q
P

i� t Yi. As with any sim-

ple linear regression model, the uncertainty about

the slope and intercept depends on (i) how closely

the data points are aligned in a straight line, as

residuals will be smaller when model assumptions

are not violated substantially and when measure-

ments are reasonably accurate, (ii) the range of

values on the x-axis and (iii) the number of data

points. The biomass before catches were removed,

Binit, corresponds to the x-intercept. This intercept

can be predicted more accurately when the y-val-

ues, relative abundance, are observed both at high

and quite low values. Ricker (1958) noted that

intense fishing effort that reduces the abundance

considerably leads to informative data for the

depletion model, and Pope (1972) found the same

to be true for cohort analysis. Many fisheries have
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undergone a period of rapid removals and can

therefore be expected to yield informative data, if

scientific data were being collected at the time.

Hilborn (1979) demonstrated why and how

certain data scenarios are informative, using a

simplified Schaefer biomass-dynamic model that has

a closed-form solution. He concluded that contrast

is needed in both abundance and harvest rate to

obtain unbiased and precise parameter estimates.

Specifically, Hilborn (1979) identified the most

informative data scenario as one that includes a

period of quite heavy exploitation, followed by a

period where the stock is allowed to rebuild to an

intermediate level, after which the exploitation rate

increases again.

The parameter of main interest in catch-curve

analysis is the fishing mortality rate in each year, Ft,

frequently used in fisheries management. This

parameter is confounded with the natural mortality

rate, as cohorts decline at an exponential rate Zt ¼
Ft+M. If little or no fishing has taken place in

previous years, Z corresponds to the rate of natural

mortality M, which is otherwise a very difficult

parameter to estimate. More generally, catch-at-age

data that contain years with high and low fishing

effort are informative to bound possible values of M,

and therefore Ft (Beverton and Holt 1957). Varia-

tion in fishing effort has also been found to be

informative for more complex age-structured mod-

els to separate natural and fishing mortalities

(Hilborn and Walters 1992). Of course, uncertainty

about the estimated parameters will also decrease if

large numbers of fish are sampled at random and

measured with negligible ageing error, and if

M varies only slightly between years, without a

consistent increasing or decreasing trend (Beverton

and Holt 1957).

Several simulation studies have explored the

behaviour of statistical catch-at-age models. Bence

et al. (1993) found that current abundance is

estimated more reliably when harvest rate has been

high, and when the true survey selectivity curve is

asymptotic rather than dome-shaped. The study of

Sampson and Yin (1998), later updated by Yin and

Sampson (2004), showed how low natural mortal-

ity M, high recruitment variability and small

changes in the harvest rate all lead to unreliable

estimates. They also concluded that for the U.S.

West Coast groundfish fishery, it would be more

cost-effective to gain information by increasing

sampling for age composition than by improving

the precision of the survey on which abundance

indices are based, at least from a single-species

perspective. Ianelli (2002) found that reference

points are overestimated when the true steepness

h of the stock-recruitment curve is low, and

underestimated when the true value of h is high.

In their simulation study, Punt et al. (2002) showed

how depletion level, defined as current abundance

compared with average virgin abundance, was

estimated more reliably than other reference points.

They also found that the statistical catch-at-age

model performed substantially worse when age-

composition data were not available.

This study

The goal of this study is to improve our understand-

ing of how uncertainty about the status of a fishery

resource depends on data, models and assumptions.

An ‘informative’ data scenario is one that enables a

given model to estimate the status of a fishery with

greater accuracy than most other data scenarios

would. The hypotheses that will be addressed are:

H1 Fisheries data are most informative when they

span a period where the population was fished

down to a low level.

H2 Fisheries data are most informative when they

span a period where the population was fished

down to a low level and then allowed to

rebuild for some time.

H3 The level of stock depletion is estimated more

reliably than other reference points.

H4 A data set that includes both an index of

relative abundance and catch-at-age data is

much more informative than a data set that

includes only one of these two types of data.

H5 Not knowing M, h and right-hand selectivity

leads to inaccurate estimates of stock abun-

dance and reference points.

H6 Models estimating M perform about as well as

models estimating h.

H7 M can be estimated reliably if age-composition

data are available from when the population

was unfished.

H8 M can be estimated reliably from the rate of

population increase if the stock is allowed to

rebuild from a low level.

H9 h can be estimated reliably from catch-at-age

data and an index of relative abundance when

the data cover a period in which abundance

varies substantially.

H10 Right-hand selectivity can only be estimated

reliably when M is known.
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Methods

First, we define four fishing history scenarios and

generate stochastic data sets using an ‘operating

model,’ based on an age-structured population

dynamics model. The performance of a suite of

estimation models is then evaluated, with respect to

how well they estimate the values of six reference

points. The simulation procedure, outlined in Fig. 1,

is repeated for each scenario, random seed and

estimation model. A scenario consists of chosen

parameter values and a harvest rate schedule,

described in more detail below. The operating model

first applies stochastic recruitment and outputs the

resulting reference point values. It then applies

random observation noise and outputs the assess-

ment data that are used as input for the estimation

models. Finally, the estimated reference points are

derived from the parameter estimates, and com-

pared with the ‘true’ reference points that were not

subject to observation noise.

Scenarios

Four fishing history scenarios are simulated in the

analysis: (A) one-way trip where harvest rate is

gradually increased while the abundance decreases,

(B) no change where abundance is steady at a

constant and somewhat low harvest rate, (C) good

contrast where the stock is fished down to less than

half its initial size and then allowed to rebuild and (D)

rebuild only where the stock begins at a very low

abundance and is allowed to rebuild under low

fishing pressure. The fishing history scenarios are

designed specifically to address hypotheses 1–2 and

7–9, in terms of harvest rate and the expected value

Figure 1 The stimulation proce-

dure. Arrows and boxes indicate the

workflow for a single run, and mul-

tiplications describe how the study

consists of multiple runs.
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of the abundance index (Fig. 2). Time trajectories

offer a more traditional view of the same data (Fig. 3).

Operating model

The biological component

The operating model is a statistical catch-at-age

model (Fournier and Archibald 1982) with biolog-

ical characteristics (Table 1) and parameter values

(Table 2) based on Atlantic cod (Gadus morhua,

Gadidae). It follows the parametrization of the

Coleraine statistical catch-at-age software (Hilborn

et al. 2003), which is used to implement the

estimation models.

The population dynamics are governed by the

equation:

Ntþ1;aþ1 ¼ Nt;ae�Mð1�C SautÞ ð1Þ

where Nt,a is population size at time t and age a, M is

the rate of natural mortality, CS is the selectivity of

the commercial fishery and u is harvest rate. The

oldest age group, age A, is treated as a plus group:

Ntþ1;A ¼ Nt;A�1e�Mð1�C SAutÞ þNt;Ae�Mð1�C SAutÞ
ð2Þ

Selectivity is an asymmetric normal curve deter-

mined by three shape parameters,

Sa ¼
exp �ða�SfullÞ2

expðSleftÞ

� �
; a � Sfull

exp �ða�SfullÞ2
expðSrightÞ

� �
; a > Sfull

8><
>: ð3Þ

where Sfull is the age at full selectivity, Sleft describes

the left-hand slope and SSright the right hand slope of

the curve. The survey selectivity curve has a

high SSright ¼ 15 (Table 2) so the oldest fish are

fully selected, but the commercial selectivity has an

intermediate CSright ¼ 6, resulting in a slightly

dome-shaped curve (Fig. 4). Harvest rate is defined

as the fraction removed from the vulnerable bio-

mass in the middle of the fishing year,

ut ¼ Yt

�P
aðCSaNt;awaÞe�M=2, where Y is catch

and w is body weight.

The population size at the start of the first year is

N1;1 ¼ R0Rinit � expðRe1;1 � r2
R=2Þ

N1;a ¼ R0Rinite
�ða�1ÞM

Xa�1

i¼1

ð1�C SiuinitÞ

� expðRe1;a � r2
R=2Þ

N1;A ¼ R0Rinite
�ðA�1ÞM

�
XA�1

i¼1

ð1�C SiuinitÞ=½1� e�Mð1�C SAuinitÞ�

� Rplus ð4Þ

(A) (B)

(C) (D)
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Figure 2 The four fishing history

scenarios considered in this study, in

terms of the relationship between the

harvest rate and the expected value

of the abundance index. Circles rep-

resent the status of the fishery in the

first year. (A) One-way trip, (B) no

change, (C) good contrast, (D) rebuild

only.
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for 1-year olds, intermediate ages and the plus

group. R0 is average virgin recruitment, Rinit

scales the initial population size across all ages

and uinit is the initial harvest rate. The Re
elements are random recruitment deviates gener-

ated from the normal distribution, Re�Norm(0,rR),

where rR is recruitment variability. The Rplus term

scales the initial plus group and is not drawn

from the same distribution as the Re recruitment

deviates for the younger ages. Instead, a large

number of initial ages are generated, up to

100 years old, and then ages 10 and over are

aggregated in a plus group.

Recruitment is stochastic around a Beverton-Holt

stock-recruitment function, reparametrized accord-

ing to Francis (1992):

Ntþ1;1 ¼
4hR0ðBt=B0Þ

1� hþ ð5h� 1ÞðBt=B0Þ
� expðRetþ1;1 � r2

R=2Þ ð5Þ

where Bt ¼ RaNt,aUawa is spawning biomass,

B0 ¼
XA�1

a¼1

R0e�ða�1ÞMUawa

þ R0e�ðA�1ÞMUAwA=ð1� e�MÞ ð6Þ

is average virgin spawning biomass, h is steepness of

the stock-recruitment curve, and U is proportion

mature.

Generating the simulated data sets

One hundred data sets are generated for each

fishing history scenario. These data sets vary in

terms of landings, survey abundance index and

commercial catch-at-age. The harvest rate is always

the same in each scenario, but the resulting

landings change as population size changes with

stochastic recruitment. There are 10 age classes and

20 years of data, nominally referred to as 1985–

2004. The landings are assumed to be known

exactly, but the catch at age and abundance index

are subject to random observation error. When

stochastic recruitment and observation noise is

Table 1 Age-specific weight (kg) and maturity (propor-

tion) used in the operating and estimation model.

Age 1 2 3 4 5 6 7 8 9 10+

Weight (kg) 0.3 0.7 1.3 1.8 2.6 3.6 4.9 6.3 7.7 10.1

Maturity 0.0 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0

0
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4

1985 1990 1995 2000
0
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Figure 3 The four fishing history

scenarios considered in this study, in

terms of spawning biomass (line) and

landed catch (bars). (A) One-way

trip, (B) no change, (C) good

contrast, (D) rebuild only.
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added to the original templates from Fig. 2, the

observed abundance index shows random fluctua-

tions, but the overall fishing history is still recog-

nizable (Fig. 5).

Even though the harvest rates in Table 2 are

followed precisely, the resulting landings vary

among the data sets because of stochastic recruit-

ment. The level of recruitment variability (rR ¼
0.6), observation noise for the abundance index

(rI ¼ 0.2) and observation noise for the commercial

catch at age (n ¼ 50) are similar to those used in

recent assessments of the Icelandic cod stock (ICES

2003).

The survey abundance index is proportional to

the biomass vulnerable to the survey in the middle

of the fishing year:

It ¼ q
X

a

SSaNt;awae�M=2 � expðIetÞ ð7Þ

where I is the observed abundance index, q is the

catchability coefficient, SS is survey selectivity and

Ie�Norm(0,rI) is random observation noise. The

commercial catch-at-age data are provided to the

assessment model in the form of proportions at age.

These proportions are generated assuming that the

sampling is multinomial:

Pt;a � Multinom n;
CSaNt;aP
a CSaNt;a

� �.
n ð8Þ

where P is the observed catch at age and n is the

sample size used to generate observation noise.

Survey catch-at-age data are not used in this

study, to keep the analysis and interpretation as

simple as possible. The survey abundance index and

the commercial catch at age are independent

sources of information, one about changes in

relative abundance, the other about relative cohort

sizes and mortality rates. Data are assumed to be

available for each year and the landings are output

without observation error.

Estimation models

Thirteen estimation models are fitted to the simu-

lated data. They have the same parametrization as

the operating model (Equations 1–8) and are

implemented with the Coleraine statistical catch-

at-age software (Hilborn et al. 2003). The models

differ in terms of which data types are included in

the objective function and which parameters are

Table 2 Parameter values and harvest rate schedules for

the four fishing history scenarios.

Scenario:

A B C D

One way No change Contrast Rebuild

Parameters

R0 250 000 * * *

h 0.7 * * *

M 0.2 * * *

Rinit 1 0.8 1 0.2

uinit 0 0.16 0 0.4

Rplus 1 * * *

CSfull 5 * * *

CSleft 1 * * *

CSright 6 * * *

SSfull 4 * * *

SSleft 1 * * *

SSright 15 * * *

q 2.5 · 10)7 * * *

Harvest rate

1985 0.026 0.160 0.039 0.067

1986 0.036 0.160 0.050 0.067

1987 0.050 0.160 0.064 0.067

1988 0.067 0.160 0.079 0.067

1989 0.088 0.160 0.096 0.067

1990 0.113 0.160 0.114 0.067

1991 0.142 0.160 0.132 0.067

1992 0.174 0.160 0.151 0.067

1993 0.208 0.160 0.168 0.067

1994 0.241 0.160 0.184 0.067

1995 0.273 0.160 0.199 0.067

1996 0.301 0.160 0.209 0.067

1997 0.325 0.160 0.207 0.067

1998 0.345 0.160 0.193 0.067

1999 0.361 0.160 0.168 0.067

2000 0.374 0.160 0.138 0.067

2001 0.385 0.160 0.107 0.067

2002 0.394 0.160 0.080 0.067

2003 0.401 0.160 0.053 0.067

2004 0.408 0.160 0.023 0.067

An asterisk indicates that the same parameter value applies

across all scenarios.
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Figure 4 Age-specific characteristics of the operating

model: survey selectivity (plain line), commercial selectivity

(line with circles), maturity (dashed line) and weight

(bars).
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estimated (Table 3). The models are designed spe-

cifically to address hypotheses 4–10.

The 13 models consist of three ‘families,’ indi-

cated by the first digit of the abbreviation used to

identify the model: family 1 uses only landings and

abundance index, family 2 uses only landings and

catch at age, family 3 uses all three data types.

Thus, models from family 1 are akin to biomass-

dynamic models (with R0 scaling the absolute size of

the population instead of K, and h and M determin-

ing the intrinsic growth rate instead of r), models

from family 2 resemble catch-curve analysis based

on multiple cohorts, and those from family 3 are

several variants of statistical catch-at-age analysis.

Although it is possible to examine the implica-

tions of estimating every combination of parame-

ters, the focus of this study is on three key

parameters: the steepness of the stock-recruitment

relationship (h), the natural mortality rate (M) and

the right-hand selectivity shape parameter (CSright)

for the commercial fishery. Models that estimate

these parameters have ‘h,’ ‘M’ or ‘r’ in their

abbreviations. When parameters are not estimated,

they are fixed at the true value, as is done for the

survey selectivity parameters.

The Coleraine software requires that all estimated

parameters be bounded. Wide bounds (Table 4) are

assigned to all parameters so as not to impose any

major constraints on the values for the parameters.

The objective function for the estimation models

is the sum of three components. The first two relate

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Abundance index

H
ar

ve
st

 r
at

e
(A) (B)

(C) (D)

Figure 5 Examples of stochastic

data sets (random seed ¼ 100), in

terms of the relationship between the

harvest rate and the expected value

of the abundance index. Circles rep-

resent the status of the fishery in the

first year. (A) One-way trip, (B) no

change, (C) good contrast, (D) rebuild

only.

Table 3 The 13 estimation models in terms of data types

used and parameters estimated.

Model 1 1h 1m 2 2h 2m 2r 3 3h 3m 3r 3mr 3hmr

Data

Catch x x x x x x x x x x x x x

Index x x x x x x x x x

CA x x x x x x x x x x

Estimated

R0 x x x x x x x x x x x x x

h x x x x

M x x x x x

Rinit x x x x x x x x x x x x x

uinit x x x x x x x x x x x x x

Rplus x x x x x x x x x x

CSfull x x x x x x x x x x

CSleft x x x x x x x x x x

CSright x x x x

q x x x x x x x x

Re x x x x x x x x x x

Catch stands for landings, index for survey abundance index and

CA for commercial catch at age.
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to data included in the analysis and the last is a

penalty on recruitment deviations from the stock-

recruitment relationship:

f ¼ � log LI � log LC þ Pen ð9Þ

The abundance-index likelihood component is

lognormal:

� log LI ¼
X

t

ðlog It � log ÎtÞ2

2r2
I

ð10Þ

where I and Î are the observed and model-predicted

abundance indices. The robust normal likelihood for

proportions (Fournier et al. 1990) is assumed for the

catch-at-age data:

where P and P̂ are observed and the model-

predicted catch proportions at age. Finally, recruit-

ment deviates are penalized under the assumption of

lognormality:

Pen ¼
XA�1

a¼2

Re2
t;a

2r2
R

þ
Xtmax�1

t¼2

Re2
t;1

2r2
R

; ð12Þ

where Rel,a and Ret,1 are recruitment deviates in the

initial year and subsequent years, and rR is a

measure of the extent of recruitment variability. The

estimation models are given the correct (i.e. the

operating model) values for rI ¼ 0.2, the effective

sample size n ¼ 50 for the catch-at-age data and

recruitment variability rR ¼ 0.6.

Reference points

Six reference points are evaluated as potential

management quantities of interest: Bcurrent(current

biomass), ucurrent (current harvest rate), Depletion

(current depletion level), MSY (maximum sustain-

able yield), Bcurrent/BMSY (current biomass relative

to BMSY) and Surplus (current surplus production).

These reference points are chosen because they are

commonly used in fisheries management. Bcurrent,

ucurrent and Depletion are calculated using the

equations:

Bcurrent ¼
X

a

N2005;aUawa ð13Þ

ucurrent ¼ Y2004=
X

a

ðcSaN2004;awaÞe�M=2 ð14Þ

Depletion ¼ Bcurrent=B0 ð15Þ

The maximum sustainable yield, MSY, is

defined as the long-term average catch when the

harvest rate is set to an optimal value, uMSY. The

average catch at a given harvest rate can be

calculated in closed form, by combining methods

from Lawson and Hilborn (1985) and Francis

(1992). First, the equilibrium age composition is

standardized so that the number of 1-year olds

equals 1:

n�a ¼
e�ða�1ÞM Qa�1

i

1� CSiu; a < A

e�ðA�1ÞM
QA�1

i

1�CSiu

e�Mð1�CSAuÞ ; a ¼ A

8>>><
>>>:

ð16Þ

At this harvest rate, the average recruitment

is R* ¼ (SBPR*)a)/(bSBPR*), where a ¼
SBPR0(1)h)/(4h), b ¼ (5h)1)/(4hR0), SBPR*

¼ Ran*aUawa, and SBPR0 is calculated in the same

way as SBPR* except that u ¼ 0. The average long-

term catch for a given harvest rate is

Table 4 Bounds on estimated parameters, along with the

true values from the operating model.

Parameter True value Lower bound Upper bound

R0 250 000 1000 10 000 000

h 0.7 0.2 1

M 0.2 0 0.5

Rinit 0.2–1 0 5

uinit 0–0.4 0 1

Rplus 1 0 2

CSfull 5 3 10

CSleft 1 )2 5

CSright 6 )2 15

log q )15.2 )30 0

Re * )15 15

The true value of Rinit and uinit varies among scenarios (see

Table 2).

*Initial age-structure and annual recruitment varies between the

simulated data sets.

� log LC ¼
X

t

X
a

log exp
ðPt;a � P̂t;aÞ2

2½Pt;að1� Pt;aÞ þ 0:1=A�n�1

 !
þ 0:01

" #
ð11Þ
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Y� ¼ uR�e�M=2
X

a

n�a CSawa ð17Þ

and the corresponding spawning biomass is

B� ¼ R� � SBPR� ð18Þ

MSY and BMSY are calculated by searching iter-

atively for the u that maximizes Y*. Finally, current

surplus production is defined as the last year’s catch,

plus the resulting change in vulnerable biomass:

Surplus ¼ Y2004 þ
X

a

CSawaðN2005;a �N2004;aÞe�M=2

ð19Þ

The true reference point values from the operat-

ing model vary due to stochastic recruitment, except

ucurrent which is pre-defined in each scenario

(Table 2) and MSY which depends only on R0, h,

M and commercial selectivity. The true MSY value

is in all cases 203 thousand tonnes, with harvest

rate uMSY ¼ 0.154 and spawning biomass BMSY ¼
1270 thousand tonnes. Table 5 gives an idea of the

approximate values of the reference points, using

the special case of deterministic recruitment (all

Ret,a ¼ 0 and rR ¼ 0) as an example.

Performance measures

The performance of an estimation model is quanti-

fied by comparing the estimates from the 100 data

sets with the true values from the operating model,

using two performance measures. One performance

indicator is the bias of estimators:

Median bias ¼ median
ĥ� h

h

 !
ð20Þ

where ĥ is the estimated value of a reference point

and h is the true value. The median bias is used

rather than the mean, to make the performance

indicator more robust to outlying estimates of the

management quantities. The other performance

indicator is the proportion of estimates that are less

than half or greater than twice the true value:

Failure rate ¼ Prðĥ=h < 0:5 [ ĥ=h > 2Þ � 100

ð21Þ

where 0.5 and 2 bound an arbitrarily chosen range

of ‘acceptable’ error. The failure rate is a robust

measure of accuracy, capturing both bias and

imprecision, while the median bias is better at

detecting relatively small but consistent bias.

Median bias has a possible range from )1 to ¥,

and failure rate is between 0 and 100. An estima-

tion model that performs well has median bias close

to 0 and failure rate close to 0. The performance is

also presented graphically using Tukey’s boxplots,

where a solid box shows the inner quartiles, and

whiskers extend from the box to the outermost data

point within 1.5 times the interquartile range

(Tukey 1977).

Results

A total of 5200 model runs are analysed: 100 data

sets for each of the four scenarios and 13 estimation

models. In the first part of the results, we look at how

well the models estimate the reference points, and the

second part focuses on selected model parameters.

Reference points

To facilitate comparison, the distribution of the

estimated reference points (Fig. 6) are expressed as

ratios of the true values known from the operating

model. The multipanel boxplot allows one to visu-

ally evaluate the estimation performance for each

reference point across data scenarios and estimation

models. For example, the top left panel shows how

well each model estimates current spawning bio-

mass when the data are simulated based on

scenario A (one-way trip). In this panel the boxplot

medians are not far from 1, indicating that the

models estimate current abundance with relatively

small bias. However, the uncertainty of the esti-

mates is considerably greater for model families 1

and 2 than for model family 3. This is understand-

able, because model families 1 and 2 ignore the

catch-at-age and abundance-index information,

respectively, while model family 3 uses all of the

Table 5 True reference point values from the operating

model, given deterministic recruitment.

Scenario:

A B C D

One way No change Contrast Rebuild

Bcurrent 400 1216 1791 1672

ucurrent 0.408 0.160 0.023 0.067

Depletion 0.101 0.306 0.451 0.421

MSY 203 203 203 203

Bcurrent/BMSY 0.315 0.957 1.410 1.316

Surplus 170 203 195 185

Bcurrent, MSY and Surplus are shown in thousands of tonnes.
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available data. The two performance measures,

median bias and failure rate (Tables 6 and 7),

summarize the information in Fig. 6.

Bcurrent

When estimating current abundance (Fig. 6, top

row of panels), the models exhibit only a small bias

A B C D

Figure 6 Distribution of estimated reference points. Panel columns correspond to fishing history scenarios A–D and

panel rows are the six different reference points. Each Tukey boxplot shows the distribution of 100 estimates, divided by the

true value of the reference point from the operating model. The x-axis is truncated to avoid loss of detail.
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Table 6 Bias of estimated reference points, by scenario

and model.

Bcurrent ucurrent Depletion MSY

Bcurrent/

BMSY Surplus

A1 +0.1 )0.1 +0.2 +0.2 +0.1

A1h +0.1 )0.1 +0.1 +0.2

A1m )0.1 +0.1 +0.1 +0.1

A2 )0.2 +0.2 )0.1 )0.1

A2h +0.2 +0.2 +0.6 +0.2

A2m )0.2 +0.2 )0.1 +0.1 )0.1

A2r +0.1 +0.1

A3 )0.1 +0.1 )0.1 +0.1 )0.1 +0.1

A3h +0.1 +0.1 +0.2 +0.1

A3m )0.1 +0.1 )0.1 +0.1 )0.1

A3r +0.1

A3mr +0.1 )0.1 +0.1 )0.1 +0.1

A3hmr +0.1 )0.1 +0.2 +0.1

B1 )0.4 +0.6 )0.5 +2.0 )0.5 +0.1

B1h )0.7 +1.8 )0.7 +0.5 )0.6 +0.1

B1m )0.1 +0.2 )0.8 +1.4 )0.8 +0.1

B2 )0.1 +0.1 )0.2 )0.2

B2h )0.1 +0.1 )0.2 +0.2 +0.2

B2m +0.5 )0.3 +4.3 )0.1

B2r +0.3 +0.2 +0.1 +0.2 )0.2

B3 )0.1 +0.1 )0.1 )0.1

B3h )0.1 +0.1 +0.1 +0.5 +0.1

B3m +0.4 )0.2 +0.3 +1.6 +0.3

B3r +0.3 +0.2 +0.1 +0.2

B3mr +0.5 )0.1 +0.1 +0.7 +0.1

B3hmr )0.2 +0.3 )0.8 +1.9 )0.7

C1 )0.2 +0.3 )0.2 +0.2 )0.2

C1h )0.2 +0.2 )0.2 +0.2 )0.1 +0.1

C1m )0.3 +0.4 )0.2 +0.5 )0.1 )0.2

C2 )0.2 +0.2 )0.1 )0.1

C2h )0.3 +0.3 )0.2 +0.1 +0.1 )0.2

C2m )0.4 +0.8 )0.6 +0.5 )0.6 )0.2

C2r +0.1 +0.1 )0.3

C3 +0.1

C3h +0.1 +0.2 +0.1

C3m )0.1 +0.1 )0.2 +0.1 )0.2

C3r +0.2 )0.1 +0.1 +0.1 +0.1 )0.1

C3mr +0.1 )0.2 +0.2 )0.2 )0.1

C3hmr +0.2 )0.2 +0.2

D1 +12.8 +1.2

D1h )0.5 +0.8 )0.5 +3.2 )0.4 +0.5

D1m +0.3 )0.2 )0.3 +12.1 )0.3 +0.9

D2 +0.2 )0.2 )0.2 +0.5 )0.2 +0.2

D2h +0.3 )0.2 )0.1 +0.4 )0.1 +0.2

D2m +26.9 )1.0 +0.2 +23.8 +0.2 +4.8

D2r +4.3 )0.8 +0.1 +2.5 +0.2

D3 )0.2 +0.3 )0.1 )0.1 )0.1 )0.1

D3h )0.3 +0.4 )0.2 )0.1 )0.1 )0.1

D3m +0.2 )0.2 +0.1 +0.8 +0.1

D3r +0.2 )0.1 +0.1 +0.1 +0.1

D3mr +0.7 )0.2 +1.1

D3hmr )0.3 +0.9 )1.0 +1.8 )1.0 )0.2

Blank entries denote negligible bias, between )0.05 and +0.05.

Table 7 Failure rates of estimated reference points, by

scenario and model.

Bcurrent ucurrent Depletion MSY

Bcurrent/

BMSY Surplus

A1 20 13 34 1 34 7

A1h 24 20 29 29 39 17

A1m 15 11 39 12 41 12

A2 9 3 10 0 10 5

A2h 24 15 25 6 45 20

A2m 16 10 39 7 40 7

A2r 19 4 16 1 17 5

A3 0 0 2 0 2 1

A3h 1 0 5 1 17 1

A3m 5 4 28 7 28 4

A3r 1 0 4 0 4 0

A3mr 2 1 26 7 26 4

A3hmr 2 1 25 4 27 1

B1 74 70 73 63 73 24

B1h 83 82 81 46 75 25

B1m 74 70 74 58 77 25

B2 34 27 22 12 22 21

B2h 45 38 41 28 49 28

B2m 65 64 67 61 69 50

B2r 45 39 29 21 30 30

B3 0 0 3 0 3 4

B3h 2 2 20 20 43 5

B3m 49 39 68 56 69 36

B3r 21 10 18 5 20 9

B3mr 45 37 62 45 65 34

B3hmr 60 58 81 69 88 29

C1 32 32 35 13 35 24

C1h 21 22 32 17 36 25

C1m 41 40 46 39 52 23

C2 16 14 8 4 8 11

C2h 36 36 33 31 47 38

C2m 51 52 62 35 62 39

C2r 21 16 8 6 9 37

C3 0 0 0 0 0 4

C3h 0 0 7 5 19 7

C3m 3 3 28 7 30 12

C3r 9 1 3 0 3 17

C3mr 8 8 30 8 31 22

C3hmr 8 8 35 15 42 22

D1 74 73 46 59 46 57

D1h 91 90 56 59 56 59

D1m 84 83 52 69 49 58

D2 69 66 26 54 26 61

D2h 77 76 24 73 25 77

D2m 92 90 44 88 48 87

D2r 83 85 21 78 23 77

D3 6 5 10 3 10 13

D3h 9 6 17 13 21 15

D3m 49 47 36 47 38 42

D3r 31 25 9 26 11 32

D3mr 53 46 33 52 35 41

D3hmr 85 89 64 57 65 55

What makes fisheries data informative? A Magnusson and R Hilborn

�2007 The Authors

350 Journal compilation � 2007 Blackwell Publishing Ltd, F I S H and F I S H E R I E S , 8, 337–358



in data scenario A (one-way trip), with models 2

and 2m exhibiting a negative bias of )0.2. The

failure rate is also relatively low in scenario A,

ranging from 0 for model 3, to 24 for models 1h and

2h. Most of the boxplots are wider in scenario B (no

change), indicating that the data in this scenario are

less informative about current abundance. Models 3

and 3h are exceptions from this general pattern, as

their performance is comparable to scenario A. The

considerably higher failure rate of models 3m, 3r,

3mr and 3hmr in scenario B shows how the

uncertainty increases when the natural mortality

rate and/or right-hand selectivity are unknown.

The performance of the estimation models in

scenario C (good contrast) is better than in scenario

B and about as good as scenario A. The greatest bias

in scenario C is )0.4 for model 2m, which also has a

relatively high failure rate of 51, while models 3 and

3h have 0. Scenario D (rebuild only) is the least

informative about current abundance. The lowest

failure rates are 6 and 9 for models 3 and 3h, but

the estimates from these models have a bias of )0.2

and )0.3. The other models have much higher

failure rates in scenario D, including the highest of

all cases, 92 for model 2m.

ucurrent

The current harvest rate (Fig. 6, second row of

panels) is never greatly overestimated in scenario

A. This is because the estimated fraction of the

biomass caught in a year cannot be many times

higher than the true value of 0.408 in this

scenario (Table 5). Nevertheless, a small but con-

sistent positive bias of c. +0.1 is shown by model

family 3, but failure rates are quite low, 0 for

models 3, 3h and 3r, up to 20 for model 1h. In

scenario B, all models have high failure rates

except for models 3, 3h and 3r, with 0, 2 and 10,

respectively. Model 3r is unbiased, but 3 and 3h

are positively biased by +0.1. The models that

estimate natural mortality, 1m, 2m, 3m, 3mr and

3hmr all show high failure rates, between 37 and

70. Failure rates in scenario C are lower than in

scenario B, but higher than in scenario A. The

median bias ranges from 0 for models 3 and 3h, to

+0.8 for model 2m, and failure rates are lower for

model family 3 than the simpler models. Model

performance in scenario D is considerably worse

than in the other scenarios. Models 3 and 3h have

low failure rates of 5 and 6, but consistently

overestimate the harvest rate with a bias of +0.3

and +0.4. Model 3r has a smaller bias of )0.1, but

a failure rate of 25, while model 2m shows an

extreme )1.0 bias and a failure rate of 90.

Depletion

Many of the models estimate current depletion

(Fig. 6, third row of panels) in scenario A about as

well as current abundance, but there are notewor-

thy exceptions. Specifically, the failure rate is

consistently higher for current depletion compared

to current abundance when the natural mortality

rate is unknown, in models 1m, 2m, 3m, 3mr and

3hmr. Scenario B is again less informative than

scenario A about current depletion, with median

bias ranging from )0.8 for models 1m and 3hmr, to

+0.3 for model 3m, and failure rate from 3 for

model 3 to 81 for models 1h and 3hmr. Models 2,

2r, 3, 3h and 3r perform quite well in scenario C,

with failure rates below 10, while model 2m is

negatively biased and has a high failure rate of 62.

Scenario D is clearly more informative about deple-

tion than absolute abundance, with the models

showing less extreme biases and failure rates.

Nevertheless, models 1h, 1m and 3hmr provide

negatively biased and inaccurate estimates of cur-

rent depletion in scenario D.

MSY

All models in scenario A estimate the maximum

sustainable yield (Fig. 6, fourth row of panels) with

quite low failure rates, although the estimates are

often slightly biased towards overestimation. Model

1h has the highest failure rate, 29, but the failure

rates of the remaining models are between 0 and

12. Models 2, 2r, 3, 3h and 3r perform relatively

well in scenario B, but the other models overesti-

mate MSY considerably. Model performance in

scenario C is again similar to that in scenario A,

except that models 1m and 2m have larger bias

and higher failure rates. Scenario D is highly

uninformative about MSY for all models except 3

and 3h, which have failure rates 3 and 13,

respectively. Other models in this scenario are

positively biased with failure rates between 26 and

88.

Bcurrent/BMSY

The ability to estimate the ratio Bcurrent/BMSY

(Fig. 6, fifth row of panels) is largely similar to that

for current depletion, the other ratio reference point,

reflecting a strong correlation between the B0,

Bcurrent and BMSY parameter estimates. The failure

rates in scenario A range from 2 for model 3, to 45
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for model 2h. Scenario B is less informative about

the stock status relative to BMSY, although models 2,

3 and 3r perform relatively well. The estimation

models in scenario C are subject to rather small

biases, with the exception of )0.6 for model 2m. In

scenario D, most of the models have failure rates

below 50, but model 3hmr is strongly biased

downwards, with median bias )1.0.

Surplus

All models estimate current surplus production

(Fig. 6, bottom row of panels) quite accurately in

scenario A, with failure rates ranging from 0 for

model 3r, to 20 for model 2h, which also shows the

greatest bias of +0.2. Scenario B is much more

informative about surplus production than about

other reference points, with a bias of )0.2 to +0.1,

and failure rates from 8 for model 3, to 45 for model

2m. The estimation performance is also good in

scenario C, with the greatest bias being )0.3 for

model 2r, and failure rates ranging from 4 for model

3, to 39 for model 2m. In scenario D, failure rates

are generally high, over 50 for all models in families

1 and 2. The only models that perform well here are

3 and 3h, with failure rates of 13 and 15, and a bias

of )0.1. Thus, estimating surplus production reli-

ably in scenario D requires that both catch-at-age

data and an index of abundance are available, as

well as perfect knowledge about the true natural

mortality rate, recruitment steepness and right-

hand selectivity.

Parameters

Steepness h and natural mortality M are estimated

directly in the model, while selectivity at oldest age

S10 is a derived parameter from Equation (3). In

Fig. 7, the estimated parameter values are divided

by the true values from the operating model, which

are h ¼ 0.7, M ¼ 0.2 and S10 ¼ 0.94.

Steepness is overestimated by all models in all

scenarios, but relatively accurate estimates are seen

in scenario D using models 2h and 3h. By definition,

steepness has an upper bound of 1 (Francis 1992) and

many estimates in the top row of panels in Fig. 7 run

into this bound, where ĥ=h ¼ 1:0=0:7 ¼ 1:43, but

less frequently in scenario D. Estimates of natural

mortality rate are generally unreliable, especially

using the 1m or 3hmr models, but relatively accurate

estimates are seen in scenario A using the 3m model.

When right-hand selectivity is estimated as well, in

models 3mr and 3hmr, M becomes biased towards

underestimation. In other words, when the estimated

selectivity does not fully target older fish, the

relatively high frequency of older fish in the catch

can be fitted by increasing the natural mortality rate.

Selectivity at oldest age is consistently underesti-

mated (Fig. 7, bottom row of panels). This bias is

partly due to the true value of S10 ¼ 0.94 being so

near the theoretical upper bound of 1, but the

estimates are also inaccurate, in many cases less

than half the true value. The performance does not

differ much between models 2r, 3r, 3mr and 3hmr,

0 1 2 0 1 2 0 1 2 0 1 2

3hmr
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Figure 7 Distribution of estimated parameters h (steepness), M (natural mortality) and derived parameter S10 (selectivity

at oldest age). Panel columns correspond to fishing history scenarios A–D and panel rows are the different parameters. Each

Tukey boxplot shows the distribution of 100 estimates, divided by the true value of the parameter from the operating

model.
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but scenario A is slightly more informative than the

others about selectivity at oldest age.

Summary and discussion

Below, the hypotheses are reviewed in light of the

results, using average failure rate as a summary

statistic. This is followed by a general discussion

about implications and the strengths and weak-

nesses of the experimental design.

Hypotheses

H1 Fisheries data are most informative when they

span a period where the population was fished

down to a low level.

H2 Fisheries data are most informative when they

span a period where the population was fished

down to a low level and then allowed to rebuild

for some time.

Table 8 shows the estimation performance in

each scenario, where each average is based on 65

failure rates from Table 7, across models and

reference points. There is a clear division, also

noticeable in Fig. 6, where fishing histories A (one-

way trip) and C (good contrast) provide more

reliable data to estimate the reference points than

B (no change) and D (rebuild only). The results

provide slightly more support to hypothesis 1

(average failure rate in scenario A ¼ 12.7) than

hypothesis 2 (C ¼ 21.0), but both of those scenarios

are much more informative than B or D.

The results from the ‘one-way trip’ scenario imply

that fisheries data spanning an early period of high

abundance followed by low abundance are likely to

be informative in age-structured stock assessment,

even if the fishing history does not include

subsequent rebuilding. This is in contrast to findings

from simulation studies of biomass-dynamic models,

where a rebuilding phase provides necessary infor-

mation to estimate the population growth param-

eters (Hilborn 1979; Hilborn and Walters 1992). It

is worth noting that those studies looked at how

well the parameters of the Schaefer model were

estimated, not just reference points.

H3 The level of stock depletion is estimated more

reliably than other reference points.

The reference point with the lowest overall failure

rate is not the current depletion level, but surplus

production (Table 9). But from Fig. 6 it is clear that

Depletion is a more robust reference point across all

scenarios. The reference points that are in absolute

biomass units (Bcurrent, MSY and Surplus) become

highly unreliable in scenario D (rebuild only),

particularly when natural mortality is unknown.

The relative biomass estimates (Depletion and

Bcurrent/BMSY) perform much better in those cases.

Punt et al. (2002) and other studies have shown

that depletion is generally estimated more reliably

than other reference points. The greater the corre-

lation is between the Bcurrent and B0 parameter

estimates, the smaller the variance around the

estimated ratio of the two. The results from scenar-

ios A through D indicate that depletion may be

subject to slightly higher failure rates than some

other reference points when the data are informa-

tive, but is a robust quantity to estimate in worst-

case uninformative scenarios.

An interesting exception is how accurately cur-

rent surplus production is estimated in scenario B.

This is understandable, since if the abundance index

and catch is constant over time, then the surplus

production must be roughly equal to the catch.

Table 8 Average failure rate in each scenario, across all

reference points and models.

Scenario A Scenario B Scenario C Scenario D

12.7 41.8 21.0 49.1

A, one-way trip; B, no change’ C, good contrast; D, rebuild only.

Table 9 Average failure rate for each reference point,

across all models and scenarios.

Bcurrent ucurrent Depletion MSY Bcurrent/BMSY Surplus

34.3 31.4 32.4 27.2 35.4 26.1

Bcurrent, current spawning biomass; ucurrent, current harvest rate;

Depletion, current depletion level; MSY, maximum sustainable

yield; Bcurrent/BMSY, current abundance relative to BMSY; Surplus,

current surplus production.

Table 10 Average failure rate for each estimation model

family, across all reference points and scenarios.

Family 1 Family 2 Family 3

45.4 35.8 20.9

1, landings and abundance-index data only; 2, landings and

catch-at-age data only; 3, all three data types.
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H4 A data set that includes both an index of

relative abundance and catch-at-age data is

much more informative than a data set that

includes only one of these two types of data.

Estimation models of family 3 (all data types)

perform better than family 1 (no age data) and family

2 (no abundance index), as shown in Table 10. This

comes as no surprise and is in agreement with the

recommendations by Deriso et al. (1985). Models

similar to those of family 1 have been used by Hilborn

(1990) and others, and are seen by many as a

preferable alternative to traditional biomass-dynamic

models (Maunder 2003). Their argument is that

traditional biomass-dynamic models make implicit

assumptions that offer limited freedom to explore

different hypotheses about the fishery dynamics.

Model family 2 performs surprisingly well. Even

in the absence of abundance-index data, the

landings and age-composition data provide consid-

erable information to estimate both absolute abun-

dance and relative depletion. The common view is

that estimation of these quantities requires either an

abundance index or highly restrictive assumptions

(Shepherd 1984; Deriso et al. 1985; Hilborn and

Walters 1992), but here the assumptions of model

family 2 are similar to families 1 and 3. Further-

more, convergence diagnostics indicated that mod-

els of family 2 were no less estimable than the other

models. This behaviour may be due to the simplified

nature of the simulation environment, but it is

worth remembering that a precursor of the statis-

tical catch-at-age model (Doubleday 1976) did not

include abundance-index data. Statistical catch-at-

age models combine the landings and the commer-

cial catch-at-age data in a framework that provides

more insight than analysing each cohort separately

(Fournier and Archibald 1982). An additional

element of information for model families 1–3 is

the penalty (Equations 9 and 12) that allows the

estimated recruitment to vary considerably (c. 20-

fold difference between largest and smallest recruit-

ment in scenario B with rR ¼ 0.6) but not by many

orders of magnitude, whereas recruitment is com-

pletely free in the model used by Deriso et al. (1985).

H5 Not knowing M, h, and right-hand selectivity

leads to inaccurate estimates of stock abun-

dance and reference points.

As expected, the models perform better when

parameters are fixed at the true value, than when

they are estimated. Even so, the 3hmr model

performs quite well in the informative scenarios A

and C, especially estimating current abundance,

harvest rate, MSY and surplus production (Fig. 6;

Tables 6 and 7).

By admitting uncertainty about M, h, and right-

hand selectivity, model 3hmr represents the real

task facing stock assessment scientists. These

parameters are highly confounded, so model 3hmr

cannot be expected to perform reliably when fitted

to real fisheries data, that come from a much more

complex system than the operating model used in

this study. In practice, some or all of these param-

eters would be fixed at an assumed value, or be

assigned an informative Bayesian prior probability

distribution. The effect of fixing these parameters at

values that are very different from the true dynam-

ics has been explored by Thompson (1994), Clark

(1999), Ianelli (2002) and others.

H6 Models estimating M perform about as well as

models estimating h.

Models estimating h perform better on the aver-

age than those estimating M, especially when the

data include both catch at age and an index of

abundance (Table 11). This means that uncertainty

about the natural mortality rate is more important

than the uncertainty about the shape of the stock-

recruitment curve, when estimating the stock sta-

tus. Model 3m shows particularly bad performance

in scenarios B and D, so in those scenarios any

external information about M would be valuable.

This information could be used to construct a

Bayesian prior for M, or to fix the parameter, which

is analogous to an extremely narrow Bayesian prior

(Gelman et al. 2004).

The highest overall failure rates were shown by

model 2m in scenario D. As expected (Beverton and

Holt 1957), it is simply not feasible to estimate

harvest rate and natural mortality from catch-at-

age, when harvest rate has been steady and low.

H7 M can be estimated reliably if age-composition

data are available from when the population

was unfished.

Table 11 Average failure rate for estimation models

1h, 1m, 2h, 2m, 3h and 3m, across all reference points

and scenarios.

h m

Model family 1 46.4 47.7

Model family 2 39.0 51.9

Model family 3 9.8 30.6
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H8 M can be estimated reliably from the rate of

population increase if the stock is allowed to

rebuild from a low level.

Model 3m estimates M with greater accuracy in

scenarios A and C than in the other scenarios

(Fig. 7). This was expected, since the age structure

in the first few years of the fishery carries informa-

tion about the natural mortality rate (Beverton and

Holt 1957). After taking the individual cohort sizes

into account, using data from all years, M can be

inferred from the age composition in the first years.

Importantly, the model was not ‘told’ that the stock

was unfished in the first year in scenarios A and C,

as the parameters Rinit and uinit were estimated in all

cases.

The estimation of M is less accurate in scenario D.

One might have expected this scenario to be

informative about the value of M, as the rate at

which the stock rebuilds is dependent on this

parameter. The other main factor determining the

rebuilding rate is recruitment, so the variable

recruitment (rR ¼ 0.6) might explain why scenario

D is not informative about M. Another reason could

be that the observation noise (rI ¼ 0.2) causes the

observed abundance index to suggest random

fluctuations instead of a steady growth.

H9 h can be estimated reliably from catch-at-age

data and an index of relative abundance when

the data cover a period in which abundance

varies substantially.

Although scenario A involves the widest range of

abundance (Fig. 2), it is only in scenario D that model

3h estimates h reliably (Fig. 7). Recruitment success

at low spawning stock levels is informative about the

shape of the stock-recruitment curve (Ricker 1958),

and scenario D includes a large number of cohorts

spawned by a small parent stock. The initial stock

status in scenario D (c. 3% of B0) is also considerably

lower than the last year’s stock status in scenario A (c.

10% of B0). When the data do not include years of

very low abundance, the models tend to overestimate

the steepness parameter (Fig. 7).

H10 Right-hand selectivity can only be estimated

reliably when M is known.

The results from this study are not conclusive

about the estimation of right-hand selectivity, as the

only case considered is when the true selectivity

curve is nearly asymptotic. Nonetheless, the results

do suggest that when the true selectivity is nearly

asymptotic, the reliability of estimating right-hand

selectivity (Fig. 7, bottom panel) depends more on

the scenario than on whether M is estimated or

fixed. Thompson (1994) performed a more thor-

ough analysis of the relationship between these

parameters, concluding that right-hand selectivity

can only be estimated reliably when M is known.

Implications

The results presented here show how the perceived

uncertainty about stock status is not only affected

by the available data, but also by the assumptions

made in the estimation process.

The features of different fishing history scenarios

determine how informative the data are about

management quantities. The main feature of an

informative fishing history is a large decrease in

abundance, while other features, such as contrast in

harvest rate, seem to be of secondary importance.

Although strong depletion is to be avoided due to

the ecological risk and economic cost, it does

provide informative data. In the words of John G.

Pope (personal communication), ‘the more fish you

catch, the better you know how many there were.’

An uninformative fishing history, commonly seen

in practice, is when a relative index of abundance and

age data are not available from the early years of the

fishery. In these cases, depletion level tends to be more

robust than other commonly used reference points,

although surplus production can also be estimated

accurately when the abundance remains stable over

a long period. When the data are informative, other

reference points can be expected to perform just as

well, or better. Despite regular criticism, MSY remains

a key concept in fisheries management, if not as a

goal, then as an upper limit of a precautionary

approach (Mace 2001; Punt and Smith 2001). MSY

is independent of the current stock status, being a

function of R0, M, h, commercial selectivity, weight

and maturity at age. When the estimation models are

given the true value of most of those quantities, MSY

will be estimated quite accurately. This can be seen

from the performance of our models 1, 2 and 3, which

generally estimated MSY with a lower failure rate

than the other reference points. However, it is also

important to note that MSY was more often overes-

timated than underestimated.

Catch-at-age data can provide information about

the current stock status, even without a relative

abundance index. When the true value of M is

known, the total mortality rate of cohorts leads to an

accurate estimate of annual harvest rate, which

combined with known annual catches leads to an

accurate estimate of vulnerable biomass. The
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assumption of a known constant M plays a central

role here. This assumption is commonly made in

practice, and the effects of its violations are largely

understood (Mertz and Myers 1997; Clark 1999). It is

an unrealistic assumption (Cotter et al. 2004), but a

time-constant M, estimated or fixed, is seen as

necessary to evaluate the consequences of alternative

catch levels (Punt and Hilborn 1997), which is the

central purpose of fisheries stock assessment.

The statistical catch-at-age model yields more

information from catch-at-age data than earlier

catch-curve methods, given that the added assump-

tions about recruitment are justifiable. Catch-at-age

and abundance-index data become particularly

informative when used together, as they provide

complementary information about different aspects

of the population dynamics, and are subject to

different assumptions. It is known that the sampled

and processed catch-at-age data do not necessarily

reflect the population age-structure very well (Pope

1988), and empirical evidence also undermines the

assumption about a constant linear relationship

between the abundance index and population abun-

dance (Harley et al. 2001). When these two data

types tell a consistent story about the population

trends, it indicates that the model assumptions are

likely to be justifiable. This can be checked by fitting

models that exclude data components, as was carried

out in this study, or by changing the likelihood

weights via the catch-at-age sample size and obser-

vation uncertainty rI about the abundance index.

When the two data types provide contradicting

information about the stock status, the validity of

each data source needs to be examined (Schnute and

Hilborn 1993).

When evaluating confidence bounds around

estimated quantities, one should strive to incorpo-

rate all major sources of uncertainty. This means

estimating parameters instead of fixing them, but

this is not always statistically feasible. Confounded

parameters like natural mortality rate M, stock-

recruitment steepness h and declining right-hand

selectivity can be estimated when the data carry

information about these quantities. For M, this

means catch-at-age data from the early years of the

fishery, or at least a contrasted history of harvest

rates (Beverton and Holt 1957) and for h it means

catch-at-age data from a period of very low abun-

dance (Ricker 1958), as verified in this study. With

the constant harvest rates in scenarios B and D,

there is no information to separate the total

mortality rate between natural mortalities and

fishing mortalities. The selectivity of older fish can

be estimated when M is a fixed parameter (Thomp-

son 1994). In a Bayesian model, one or more of

these parameters can be assigned an informative

prior distribution, perhaps from a meta-analysis of

many related stocks (Myers et al. 1999), instead of

estimating as a free parameter or fixing completely.

Overall, the estimation models showed consider-

ably high failure rates, where management quan-

tities were underestimated or overestimated by a

factor of two or more. Bearing in mind the simple

‘laboratory conditions’ of this simulation study,

stock assessment models can only be expected to

have higher failure rates when fitted to real fisheries

data. A retrospective look at fisheries assessments

around the world shows that management quanti-

ties are not estimated as accurately as statistical

theory suggests, due to violated assumptions and

ignored sources of uncertainty (NRC 1998; Walters

and Martell 2004).

Strengths and weaknesses

This study advances our understanding of fisheries

stock assessment models, with respect to what kinds

of data are informative or uninformative, and

highlights the role of assumptions. Based on the

experimental design and findings of Hilborn (1979),

Hilborn and Walters (1992), NRC (1998), Gavaris

and Ianelli (2002) and Punt et al. (2002), this

simulation study uses up-to-date statistical methods

that take advantage of the computing power avail-

able today. The scope is wide, addressing a variety of

questions, and the conclusions can be used to

support various decisions made in any fisheries

stock assessment.

Compared to real fisheries, with their complex

interaction between biological and human systems,

the simulation approach is a simplified abstraction.

Apart from stochastic recruitment, the parameters

in the operating model are constant over time

(natural mortality rate, catchability and selectivity),

and the estimation models are specified without

model error and given the true survey selectivity.

These decisions were made deliberately to make the

results as easy to interpret as possible. Excluding

survey catch-at-age data from the study allowed a

clear separation between two kinds of information:

commercial catch at age reflecting the age distribu-

tion of the population over time and a survey

abundance index reflecting relative changes in

biomass over time.
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The wide scope of this study comes at a cost, as

the experimental design is not optimal for any one

of the 10 hypotheses. Each of them could be tested

more rigorously with a simulation study specifically

designed for that purpose. Similarly, there are many

more hypotheses that could be addressed using the

same simulation framework, but applying other

treatments than was done here. For example,

examining the effect of fixing parameters at values

that are substantially lower or higher than the true

value. Model errors and violated assumptions are

inevitable in stock assessments, but the combined

experience from real fisheries and simulation studies

will help making fisheries data as informative as

possible.
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