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Deterministic models

� A deterministic model is a model where observation noise is ignored

� Typically catches are assumed known without error

� Most commonly applied fish stock assessment models are (semi-)deterministic

� These algorithms work (very simply put) by:

0: Guess the number of survivors NA+1,y and Na,Y+1

1: Back calculate (↖) all Na,y by subtracting catch and natural mortality

2: Use surveys to adjust all Na,y and update survivors accordingly

3: Repeat 1-3 until survivors converge

� Doing 0-1 just ones is known as

Virtual Population Analysis

Year e.g. 1988–2011

↖ ↖

Age ↖ ↖
...

e.g. ↖ Ca,y ↖ Na,Y+1

1–7 ↖
...

↖

· · ·NA+1,y · · ·
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Features of deterministic models

+ Super fast to compute

+ Fairly simple to explain the path from data to stock numbers (especially VPA)

− Difficult to explain why it works (converges), and what a solution mean

− These algorithms contain many ad-hoc settings (shrinkage, tapered time weights, ...)

that makes them less objective

− No quantification of uncertainties within model

? What exactly is the model

- The assumptions are difficult to identify and verify

- With no clearly defined model more ad-hoc methods are needed to make predic-

tions

- No framework for comparing models (different settings)
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Example: F-shrinkage for Eastern Baltic Cod

� These differences are not small and theoretical

� There are no objective way to choose between these two deterministic approaches

� Things would be simpler if we had a statistical model
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A full parametric statistical model

� The log catches are assumed to follow:

log(Ca,y) ∼ N
(

log

(
Fa,y

Za,y
(1− e−Za,y)Na,y

)
, σ2c

)
, where

Fa,y = fySa, with Sa=5 = Sa=6 = Sa=7 = 1, and Za,y = Fa,y +Ma,y

� The log catches from the survey are assumed to follow:

log(Ia,y) ∼ N
(
log
(
Qae

−Za,yTNa,y

)
, σ2s
)
, where

T is the fraction into the year where the survey is taken, and Qa is catchability

parameter.

� The stock sizes are assumed to follow:

Na,y = Na−1,y−1e
−Za−1,y−1

Notice that it does not define N in the first year and for the youngest age.

� So the model parameters are the undefined N ’s, fy, Sa, Qa, σc, and σs
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Fully parametrized statistical assessment models

� A statisticala model acknowledges observation noise

� The error structure is part of the model description

� To find the quantities of interest (e.g. Na,y, Fa,y, and observation uncertainties) the

likelihood of the actual observations is optimized w.r.t. the model parameters.

� Parametrized statistical assessment models have a number of benefits:

+ All model assumptions are transparent

+ Different model assumptions can be tested against each other (e.g. is F5 = F6?)

+ Different data sources can be included and correctly and objectively weighted

+ Estimation of uncertainties are an integrated part of the model

� But also a few difficulties:

− Trade-off between the number model parameters and flexibility of the model

(e.g. Fa,y vs. Fa,y = Safy)

− More advanced software needed

aa.k.a. stochastic
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Problems we wish to solve

� Deterministic approaches

– Catch at age assumed known without error

– Procedures not models

– Convergence of a deterministic procedure

– Ad-hoc adjustments

� Full parametric statistical models

– Parametric F–structure (e.g. multiplicative)

– Trade off between flexible with (too) many parameters and rigid with tractable

number of parameters

– Number of parameters increase with every new year of data added
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State-space assessment models

� This model classa is used in most other quantitative fields

� It is a very useful extension to full parametric statistical models.

� Introduced for stock assessment by Gudmundsson (1987,1994) and Fryer (2001)

� The reason state-space models have not been more frequently used in stock assessment

is that software to easily handle these models has not been available

� Can give very flexible models with low number of model parameters

� For instance we can include things like:

F3,y is a random walk with yearly variance σ2

aa.k.a. random effects models, mixed models, latent variable models, hierarchical models, ...
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Illustration of the three types of models
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Example: F 2−4 for North Sea Cod

1970 1980 1990 2000

0.0
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Model

States are the random variables that we don’t observe (Na,y, Fa,y)(
log(Ny)

log(Fy)

)
= T

(
log(Ny−1)

log(Fy−1)

)
+ ηy

Observations are the random variables that we do observe (Ca,y, I
(s)
a,y)(

log(Cy)

log(I
(s)
y )

)
= O

(
Ny

Fy

)
+ εy

Model and parameters are what describes the distribution of states and observations

through T , O, ηy, and εy.

Parameters: Survey catchabilities, S-R parameters, process and observation variances.

All model equation are as expected:

� Standard stock equation

� Standard stock recruitment (B-H, Ricker, or RW)

� Standard equations for total landings and survey indices
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Numerical Methods

� Unscented Kalman Filter X

� Laplace approximation X

� Sampling based methods X

(Numerical methods are needed to calculate the marginal distribution)

Optimization is done using AD Model Builder
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Avoiding ad-hoc choices — Eastern Baltic Cod

� Using the State-space Assessment Model (SAM) gives us an objective criteria
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Evolving selectivity — North Sea Cod
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Convergence issues — North Sea Haddock
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Features of the State-space assessment model

� Statistical model

– Maximum likelihood estimation of model parameters

– Estimation of uncertainties are an integrated part of the model

– Prediction is straight-forward

� Consistent treatment of all Na,y

� Allows selectivity to evolve
� Built-in (objective!) ‘F -shrinkage’ and ‘tapered time weights’

� Nicely handles missing observations

� Room for additional features
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Summary

� State-space assessment model is a valid alternative when:

– Catches cannot be considered know without error

– Quantification of uncertainties are needed

– Ad-hoc specifications are problematic

– Parametric structures are considered too rigid

– The number of model parameters are worrying
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Appendix
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Status

� Primary model in ICES for:

– Western Baltic Cod

– NE Atlantic Blue Whiting

– Kattegat Cod

– North Sea Cod

– Skagerrak Sole

– North Sea Herring

– Bothnian Sea Herring

� Exploratory model in ICES for:

Eastern Baltic Cod, North Sea Sole, North Sea Haddock, Skagerrak Plaice

� Quick tests for some other stocks:

Western Baltic herring, 3PS Cod, 4VWX Herring, Greenland Halibut SA2+3KLMNO,

American Plaice, Namibian Hake, Georges Bank Yellowtail Flounder, ...
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Random effects in AD Model Builder

� In random effects models we have

– Random variables we observe: x

– Random variables we do not observe: z

– Model parameters we want to estimate: θ

� If we had observed x and z we would have a joint likelihood L(x, z, θ)

� but z is unobserved so we have to estimate θ in the marginal likelihood:

L(x, θ) =

∫
L(x, z, θ)dz

� This requires a high dimensional integral — which is difficult

� This is (part of) the reason MCMC methods are so widely used

� MCMC can be slow, difficult to judge convergence, and in tools like winBugs a prior

must be assigned to everything — even when you have no prior information.

� AD Model Builder has a better solution
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Laplace approximation

� Want to compute the marginal likelihood for a given θ value:

L(x, θ) =

∫
L(x, z, θ)dz

� First the joint likelihood L(x, z, θ) is optimized w.r.t. z.

� This optimization yields an estimate ẑ, and an estimated hessian H(ẑ).

� Next a Gaussian approximation is assumed and the result (apart from a constant) is:

L(x, θ) ≈ |det(H(ẑ))|−0.5L(x, ẑ, θ)

� Notice that when defined in this way ẑ and H(ẑ) and also depend on θ, which makes

AD of this pretty difficult, but all solved for us in AD Model Builder.

� Actually this is all very simple to use. All we have to do is:

– Code up the joint negative log likelihood

– declare as random_effects_vector z(1,n);
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From Fryer’s listed disadvantages

� Requires normally distributed errors. No, but they are still convenient.

� Requires linear approximation of non-linear equations. Not anymore.

� There is some arbitrariness in the starting values. Not anymore.

� The likelihood can be very flat. No change.

� Maximum likelihood estimation can take a long time. 1-2 minutes on my laptop.

� Initial coding is hard. ADMB makes it easier

� Favours status quo so struggles to pick up a collapsing stock.
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Allow sharp jumps
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� In the standard model ∆ logFy = logFy − logFy−1 is assumed Gaussian

� Instead use a mixture, such as: ∆ logFy ∼ (1− p)N(., .) + pt1(., .)
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Allow sharp jumps - results

� Allowing the t-jump-fraction p

to be estimated.

No change.

� Forcing p = 10%.

No visible change.

� Forcing p = 30%.

Visible change,

but nothing dramatic
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Correlated Random Walks

� Instead of independent random walks for F at different ages, we can allow those

random walks to be correlated

∆ log(F ) ∼ N (0,Σ)

� The covariance matrix Σ is defined via the random walk variances, and the correlation

coefficients ρi,j = Σi,j/
√

Σi,iΣj,j

� We assume the very simple structure

ρi,j =

 1, for i = j

ρ, otherwise
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Exercise

� Start with the full parametric catch-at-age model fsa.tpl for North Sea Cod.

� Modify the code to make recruitment a random walk.

� Compare the fits

� Discuss pros and cons.
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