[CES-TCADSA

What happens internally

Anders Nielsen & Arni Magnusson



~anielsen/index.html

It

is all about minimizing functions

Want to find the parameters 6 = (61, ...,6,) that makes the observations most likely.

Equivalent to minimizing the negative log likelihood w.r.t. 6

§ = argmin £(y|0)
0

If the dimension of # is low (say n less than 5 or 10) any method can be used (grid

search, random search, finite difference approximations, ...)

AD Model Builder is capable of handling mU.Ch 1arger problems
Important for fixed effects models, and even more for random effects models
AD Model Builder uses a quasi-Newton minimizer aided by automatic differentiation

Here we will try to explain what that is, and why that is important

2/11 A = *MT*JA <8 C= (]<) (>D S <9 < v/ i [o] P


~anielsen/index.html

Quasi-Newton minimizer

<027 ADMB

Automatic Differentiation Model Builder

e A Newton minimizer is an iterative algorithm

e Fach step assumes that the function ¢(x, ) can be approximated locally by a

quadratic function
o It uses the first £, and second ¢} derivatives to find the minimum

o Instead of calculating ¢} at every step, a quasi-Newton minimizer uses successive first

derivatives ¢, to approximate £j.

e Bottom line: We need a fast and accurate way to calculate ¢

3/11 gﬁta 9 (o)== <0 e 20 i @ P


~anielsen/index.html

Finite difference: Simple, inaccurate, and slow

o Algorithm: The i’th element in ¢ is calculated by

— Add a small number A#; to the ’th element of 6 to get 0;

— Calculate (¢); ~ e(éi’xg;f(e’x)

e Notice: all that is required is that we can evaluate ¢(0, z) at any point
e Notice: it is an approximation

e Notice: it will be expensive if the dimension of 6 is high

Analytical: The best thing when possible

e Situations where we can find a nice analytical expression for ¢, are:
— Fast
— Accurate

— Extremely rare



~anielsen/index.html

Automatic differentiation: Fast and accurate

e We need to write a program to compute £(6, z) anyway

e A computer program is a long list of simple operations:

47, R 0 Yexp’, log’, sin’, Ccos’, “tan’, ‘sqrt’, and so on
e We know how to derive each of these operations
e The chain rule tells us how to combine: (f(g(x))) = f'(g9(x))g (z)

e So if the computer is instructed to:
— keep track of all the simple operations used when calculating ¢(0, x)

— use the simple derivative formulas and the chain rule
e Then once ¢(6,x) is computed, we also have ¢, with a minimum of extra calculations
e This is fast and accurate, and the difficult part is built into AD Model Builder(!)

e To get a better understanding consider the following code, wich is modified from a

larger example by Uffe Hggsbro Thygesen.

5/11 A admb 9 (o)== <0 e 20 i @ P


~anielsen/index.html

#include <cmath>
#include <iostream>
using namespace std;

class result {
private: double v,d;
public: result(){v = 0;d= 0;};
result (double val){v = val; 4 = 0;}
result (double val,double der){v = v
double Value(){return v;};
double Deriv(){return d;};

al; d = der;};

};

class parameter: public result {
public: parameter(double pval) : result(pval,1.0) {};
parameter() : result(0.0,1.0) {};
s

result sin(result n){
return result(sin(n.Value()), cos(n.Value())*n.Deriv());

};

result operator*(result nl,result n2){
return(result(nl.Value()*n2.Value(), nl.Deriv()*n2.Value() + n2.Deriv()*nl1.Value()));

s

ostream& operator<<(ostream& o,result n){
0 << n.Value() << " (Derivative: " << n.Deriv() << ") ";
return o;

}

int main(int argc, char*x argv[]){
parameter theta(2);
result y;
y = sin(thetax*theta);
cout << "The result is " << y << endl;
}

The result is -0.756802 (Derivative: -2.61457)

6/11 admb 9 (o) e>=<0 e 20 i B P


~anielsen/index.html

Forward and reverse mode

f(XlaX2)
A

c
Q v
" S
%070
3 2 o |
g_g W3 = WiWp + WiWo

4+
T 3
0 | —_—

)
S
I.E s seeds, wq, W, € {0,1}

(Image from Wikipedia)
e Forward mode is easy to understand and implement

e Not efficient when 6 is high dimensional

7/11 A = *:*JA <8 C= (]<) (>D S <9 < v/ i [o] P


~anielsen/index.html

Backward propagation
of derivative values

Xp = Wy + Wlb =cos(x1) +Xx2 X2 =W =X (Image from Wikipedia)
e Requires recording a stack of all operations
e Efficient in number of operations
e AD Model Builder uses reverse mode

e Except for random effects models where a combo of forward and reverse mode is used

8/11 AA 9 (o)== <0 e 20 i @ P


~anielsen/index.html

This should be a help in understanding why ...

e we should careful about statement like:
if (theta<7.0){nll=...;}telse{nll=...;}

e we can sometimes observe the memory requirements growing rather big if do a lot of

iterative calculations

e a 'double’ is different from a ’dvariable’, a 'dvector’ is different from a ’dvar_vector’,

e we cannot do coding like:

dvariable x=b; ... double y; y=x; ... X=Vy;

e it is usually better to use the built-in functions in AD Model Builder than coding

them yourself

9/11 A = *:*JA <8 C= (]<) (>D S <9 < v/ i [o] P


~anielsen/index.html

Exercises

Exercise 1: Add the functionality to handle the plus operator, division operator and the

cosine function to the program on page 6. Evaluate f’(2), where:

sin(sin(2?) 4 cos(z))

T2

flz) =

10/11 A _ 9 (o)== <0 e 20 i @ P


~anielsen/index.html

Exercise 2: AD Model Builder has a facility to check the automatic derivatives by com-
paring them to the finite difference approximations. It can be started by pressing
ctrl-c while a minimizer is running, or by starting the program with the flag prog-
name -dd 1 which will start the derivative checker after the first function evaluation.

Verify the derivatives for one of the previous programs.

11 A s < (< S D S WD O L


~anielsen/index.html

	It is all about minimizing functions
	Quasi-Newton minimizer
	Finite difference: Simple, inaccurate, and slow
	Automatic differentiation: Fast and accurate
	Forward and reverse mode
	This should be a help in understanding why ...
	Exercises

