
1/11 P�i?
22333ML232

AD Model Builder introduction course

What happens internally

AD Model Builder foundation

anders@nielsensweb.org

~anielsen/index.html
mailto:anders@nielsenswebb.org

2/11 P�i?
22333ML232

It is all about minimizing functions

� Want to find the parameters θ = (θ1, . . . , θn) that makes the observations most likely.

� Equivalent to minimizing the negative log likelihood w.r.t. θ

θ̂ = argmin
θ

`(y|θ)

� If the dimension of θ is low (say n less than 5 or 10) any method can be used (grid search,

random search, finite difference approximations, ...)

� AD Model Builder is capable of handling much larger problems

� Important for fixed effects models, and even more for random effects models

� AD Model Builder uses a quasi-Newton minimizer aided by automatic differentiation

� Here we will try to explain what that is, and why that is important

~anielsen/index.html

3/11 P�i?
22333ML232

Quasi-Newton minimizer

� A Newton minimizer is an iterative algorithm

� Each step assumes that the function `(x, θ) can be approximated locally by a

quadratic function

� It uses the first `′θ and second `′′θ derivatives to find the minimum

� Instead of calculating `′′θ at every step, a quasi-Newton minimizer uses successive first

derivatives `′θ to approximate `′′θ .

� Bottom line: We need a fast and accurate way to calculate `′θ

~anielsen/index.html

4/11 P�i?
22333ML232

Finite difference: Simple, inaccurate, and slow

� Algorithm: The i’th element in `′θ is calculated by

– Add a small number ∆θi to the i’th element of θ to get θ̃i

– Calculate (`′θ)i ≈
`(θ̃i,x)−`(θ,x)

∆θi

� Notice: all that is required is that we can evaluate `(θ, x) at any point

� Notice: it is an approximation

� Notice: it will be expensive if the dimension of θ is high

Analytical: The best thing when possible

� Situations where we can find a nice analytical expression for `′θ are:

– Fast

– Accurate

– Extremely rare

~anielsen/index.html

5/11 P�i?
22333ML232

Automatic differentiation: Fast and accurate

� We need to write a program to compute `(θ, x) anyway

� A computer program is a long list of simple operations:

’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’sin’, ’cos’, ’tan’, ’sqrt’, and so on

� We know how to derive each of these operations

� The chain rule tells us how to combine: (f(g(x)))′ = f ′(g(x))g′(x)

� So if the computer is instructed to:

– keep track of all the simple operations used when calculating `(θ, x)

– use the simple derivative formulas and the chain rule

� Then once `(θ, x) is computed, we also have `′θ with a minimum of extra calculations

� This is fast and accurate, and the difficult part is built into AD Model Builder(!)

� To get a better understanding consider the following code, wich is modified from a larger

example by Uffe Høgsbro Thygesen.

~anielsen/index.html

6/11 P�i?
22333ML232

#include <math.h>
#include <iostream.h>

class result {
private: double v,d;
public: result(){v = 0;d= 0;};

result(double val){v = val; d = 0;};
result(double val,double der){v = val; d = der;};
double Value(){return v;};
double Deriv(){return d;};

};

class parameter: public result {
public: parameter(double pval) : result(pval,1.0) {};

parameter() : result(0.0,1.0) {};
};

result sin(result n){
return result(sin(n.Value()), cos(n.Value())*n.Deriv());

};

result operator*(result n1,result n2){
return(result(n1.Value()*n2.Value(), n1.Deriv()*n2.Value() + n2.Deriv()*n1.Value()));

};

ostream& operator<<(ostream& o,result n){
o << n.Value() << " (Derivative: " << n.Deriv() << ") ";
return o;

}

int main(int argc, char* argv[]){
parameter theta(2);
result y;
y = sin(theta*theta);
cout << "The result is " << y << endl;

}

The result is -0.756802 (Derivative: -2.61457)

~anielsen/index.html

7/11 P�i?
22333ML232

Forward and reverse mode

(Image from Wikipedia)

� Forward mode is easy to understand and implement

� Not efficient when θ is high dimensional

~anielsen/index.html

8/11 P�i?
22333ML232

(Image from Wikipedia)

� Requires recording a stack of all operations

� Efficient in number of operations

� AD Model Builder uses reverse mode

� Except for random effects models where a combo of forward and reverse mode is used

~anielsen/index.html

9/11 P�i?
22333ML232

This should be a help in understanding why ...

� we should careful about statement like:

if(theta<7.0){nll=...;}else{nll=...;}

� we can sometimes observe the memory requirements growing rather big if do a lot of

iterative calculations

� a ’double’ is different from a ’dvariable’, a ’dvector’ is different from a ’dvar vector’, ...

� we cannot do coding like:

dvariable x=5; ... double y; y=x; ... x=y;

� it is usually better to use the built-in functions in AD Model Builder than coding them

yourself

~anielsen/index.html

10/11 P�i?
22333ML232

Exercises

Exercise 1: Add the functionality to handle the plus operator, division operator and the cosine

function to the program on page 6. Evaluate f’(2), where:

f(x) =
sin(sin(x2) + cos(x))

x2

Solution:

The result is -0.230474 (Derivative: -0.110843)

~anielsen/index.html

11/11 P�i?
22333ML232

Exercise 2: AD Model Builder has a facility to check the automatic derivatives by comparing

them to the finite difference approximations. It can be started by pressing ctrl-c while

a minimizer is running, or by starting the program with the flag progname -dd 1 which

will start the derivative checker after the first function evaluation. Verify the derivatives

for one of the previous programs (for instance the 1D diffusion model).

Solution:

an@ch-pcb-an:~/talks/admbcourse$./turbot -dd 1

Initial statistics: 3 variables; iteration 0; function evaluation 0
Function value 1.3294890e+02; maximum gradient component mag -1.3054e+02
Var Value Gradient |Var Value Gradient |Var Value Gradient

1 0.00000 -2.06761e-03 | 2 6.90776 8.30058e+01 | 3 0.00000 -1.30543e+02

Enter index(1...3) of derivative to check. To check all derivatives, enter 0: To quit enter -1: 0

Checking all derivatives. Press X to terminate checking.
Enter step size (to quit derivative checker, enter 0): 1.0e-6

X Function Analytical Finite Diff; Index
1.90075e-08 1.32929e+02 -2.07065e-03 -2.07085e-03 ; 1
6.90699e+00 1.32929e+02 8.29584e+01 8.29584e+01 ; 2
1.20007e-03 1.32929e+02 -1.30223e+02 -1.30223e+02 ; 3

an@ch-pcb-an:~/talks/admbcourse$

~anielsen/index.html

	It is all about minimizing functions
	Quasi-Newton minimizer
	Finite difference: Simple, inaccurate, and slow
	Automatic differentiation: Fast and accurate
	Forward and reverse mode
	This should be a help in understanding why ...
	Exercises

