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Abstract: Statistical analyses based on maximum likelihood methods are presented tojointly estimate harvest rates, sur- 
vival, recruitment, and population abundance from age-at-harvest data. To perform the population reconstruction 
from the age-at-harvest data, auxiliary field data and information on harvest reporting rates are required. The statis- 
tical methods permit tests of model assumptions, goodness-of-fit, and standard errors and confidence intervals for all 
estimated demographic parameters. We illustrate the methods using harvest data and radiotelemetry studies of elk 
(Cervus elaphus) from northern Idaho, USA, 1988-1993. We compare results with abundance estimates using an aer- 
ial sightability survey on the same herd. The maximum likelihood methods for age-at-harvest analysis provide a com- 

prehensive framework for population reconstruction with abundance estimates comparable to field survey techniques. 
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Population analysis, as defined by Eberhardt 
(1971:457), is the "process of attempting to deter- 
mine the structure of a population and the forces 

controlling past and future composition of that 

population." Elements of the analysis include 

estimating the age and sex composition of the 

population, survival rates, recruitment, rate of in- 
crease, and abundance. Population analysis often 
is the culmination and integration of many labor- 
intensive studies focused on various aspects of 
survival, fecundity, and abundance. A population 
analysis should be judged by how accurately it 

portrays the dynamics and structure of that pop- 
ulation. Given good estimates of survival, recruit- 
ment, and abundance, "few complications of 
mathematics, logic, or technology are involved in 

understanding population behavior in general 
terms" (Eberhardt 1971:457-458). Unfortunately, 
the mathematics become increasingly more diffi- 
cult, the assumptions more profound, and "all 
sorts of difficulties arise in trying to get along 
with the observations that can be obtained" 
(Eberhardt 1971:458). 

Age-at-harvest data collected at hunter check 
stations is a frequent starting point for popula- 
tion analysis and reconstruction. Population 
reconstruction is a method of using such demo- 
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graphic data to reproduce the historical trends in 
animal abundance (Eberhardt 1971, Lang and 
Wood 1976, Downing 1980, Roseberry and Woolf 
1991). Intriguingly nested within the age-at-har- 
vest data is information on age and sex composi- 
tion, survival, and fecundity rates. However, the 
numbers observed also are a function of hunter 
effort and reporting rates that might not be con- 
stant over time. Nevertheless, the information 
within age-at-harvest data has compelled many 
state agencies to collect these data. Due to the 
lack of better analytical methods to interpret 
these data, too often age-at-harvest data are col- 
lected at considerable expense, then neglected. 

Assuming harvest and survival rates are known, 
the age-at-harvest data can be calibrated back to 
estimates of abundance quite readily (Downing 
1980, Roseberry and Woolf 1991, Ferguson 1993). 
Current population reconstruction methods that 
use age-at-harvest data typically rely on rough 
estimates of survival, harvest, and reporting rates 
with little or no attempt to propagate the uncer- 
tainty of this information to the overall precision 
of the population reconstruction (Roseberry and 
Woolf 1991). In fisheries management, the use of 
survival and harvest rates in conjunction with 
age-at-harvest data is called virtual population 
analysis (VPA). See Fournier and Archibald 
(1982) and Deriso et al. (1985) for reviews of this 
literature. 
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Table 1. Age-at-harvest data from cow elk harvested in Game Management Unit 4, northern Idaho, USA, 1988-1993. 

Total 

Age class reported 
Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 harvest 

1988 21 36 15 8 7 8 6 5 3 3 4 3 2 1 1 1 2 126 
1989 27 40 15 20 9 11 5 10 3 2 5 0 3 2 0 0 0 152 
1990 35 42 16 19 15 14 7 7 4 5 0 3 3 3 0 2 0 175 
1991 39 32 12 17 15 10 5 6 6 0 0 0 0 0 0 0 0 142 
1992 27 32 25 18 13 19 5 13 5 9 2 2 1 2 1 1 2 177 
1993 22 23 21 22 16 15 7 9 10 5 5 5 2 3 3 3 1 172 

We present maximum likelihood approaches for 

analyzing age-at-harvest data from wildlife popu- 
lations that explicitly incorporate auxiliary infor- 
mation on harvest and survival probabilities from 

radiotelemetry data and harvest reporting rates 
from compliance surveys. Traditional population 
reconstruction methods (Downing 1980, Roseber- 

ry and Woolf 1991) separately estimate population 
abundance from other demographic parameters. 
Ourjoint analysis extracts simultaneous estimates 
of recruitment, survival rates, harvest rates, age 
structure and abundance of cohorts, and recon- 
structs population trends over time. The maxi- 
mum likelihood estimates subsequently can be 
used in viability analysis and estimating rates of 

population change. The advantages of these new 

techniques include (1) a single comprehensive 
framework for estimation, (2) the ability to avoid 

assumptions regarding the recruitment process, 
(3) maximum information extraction, and (4) the 

ability to estimate standard errors or confidence 
intervals associated with the demographic para- 
meters. We will illustrate the statistical methods 

using harvest data from an elk herd in northern 
Idaho, USA. The generalization of this approach 
to other wildlife populations will be discussed. 

EXAMPLE: FEMALE ELK HARVEST DATA 
To illustrate the age-at-harvest analysis, data col- 

lected by the Idaho Department of Fish and 
Game were used. The data came from elk har- 
vested in Game Management Unit (GMU) 4, the 
Coeur d'Alene River drainage in northern Idaho. 
Most of the harvest occurs during an October 

general rifle season. Either-sex elk can be har- 
vested during a portion of this season. In north- 
ern Idaho, all successful hunters must register 
their animals at a check station or a department- 
approved checkpoint. Checkpoints are business- 
es, such as taxidermists and butcher shops, at 
which hunters can register their animal. Data 

such as sex of the animal, location and date of 
the kill, and number of days hunted are record- 
ed. The lower jaw is collected to determine the 

age of the animal. Calves and yearlings are aged 
by inspecting tooth development (Quimby and 
Gaab 1957). Older animals are aged by examining 
cementum annuli in the I1 tooth (Klevezal and 

Kleinenberg 1967). Although data on both sexes 
were collected, we examined only the female har- 
vest data. The elk ranged from 1 to 23 years of 

age. The data for elk 18 years and older were not 
used in this analysis because their harvest num- 
bers were extremely few. We report the number 
of elk harvested by age for 1988-1993 in Table 1. 

Although reporting of elk harvests is mandatory, 
some hunters fail to do so. Ignoring the nonre- 

porting rate would have a negative (i.e., down- 
ward) bias on subsequent estimates of harvest 
rates and elk abundance. A telephone survey esti- 
mated annual compliance (Ri; i= 1, ..., Y) rates 
for the elk hunters in the panhandle region of 
northern Idaho that includes GMU 4. The annu- 
al estimates of reporting compliance rate were 
assumed to be independent of age-class and sex 
of the elk harvest. We present in Table 2 the sur- 

Table 2. Numbers of successful hunters surveyed by telephone 
(ai), numbers of hunters that registered their elk harvest (bi), 
and estimated reporting compliance rate (Ri) for elk hunters in 
the panhandle region of northern Idaho, 1988-1993. Reported 
counts were reconstructed from available survey records. 

Year 

1988 
1989 
1990 
1991 
1992 
1993 

Number of 
successful hunters 

surveyed (ai) 
275 
290 
211 
360 
201 
325 

Number who 
registered 
harvest (bi) 

143 
154 
211 
272 
201 
155 

Estimated 
reporting 
rate (Ri) 
0.5207 
0.5312 
1.0 
0.7553 
1.0 
0.4768 
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Table 3. Results from a concurrent study of radiocollared cow 
elk in GMU 4 in northern Idaho, USA, 1988-1993. Numbers of 
total cow elk collared and their fates each year are presented 
(Leptich and Zager 1995). 

Number of radiotagged elk 
Harvested 

and Nonharvest 
Year Total recorded Survived mortalitya 

1988 13 1 10 2 
1989 25 4 20 1 
1990 25 0 24 1 
1991 16 0 16 0 
1992 25 4 17 4 
1993 23 1 18 4 

a Nonharvest mortality includes unrecovered wounding loss, 
illegal kill, and natural mortality. 

vey results for the proportion of hunters who 

reported their elk harvest by year as reconstruct- 
ed from available records. 

In addition, telemetry studies of radiocollared 
cow elk were conducted concurrently (Table 3). 
The number of collared cow elk ranged from 13 
to 25, and annual information on numbers that 
survived, were harvested, and died from natural 

causes were recorded (Leptich and Zager 1995). 
These 3 data sets constituted the information 
used in the population reconstruction analysis. 

STATISTICAL ANALYSIS 

Overview 
A cohort of individuals all born during the 

same year forms the fundamental biological unit 
in this population reconstruction analysis. The 

change in cohort abundance from 1 year to the 
next is dependent on the natural survival rate and 
harvest probability of that cohort. The population 
can then be visualized as the union of the various 
cohorts comprising the population (Fig. 1). The 
observed random variables are the annual num- 
bers of individuals of that cohort that are har- 
vested and reported in consecutive years. The co- 
hort data for the cow elk population are 

represented by harvest counts along diagonals in 
Table 1. However, information beyond simply the 

age-at-harvest numbers is needed for population 
reconstruction. In other words, the harvest num- 
bers alone are insufficient to estimate abundance 
and differentiate the processes of survival, har- 
vest, and reporting. In this analysis of the demo- 

graphic data, parameters were estimated by max- 

Age class Total 

Year Ye 
1 2 3 abundance 

1 , 2 N3 4 
4 

1 N,I N2 N,3 N4 .N,j 
j-I 

2 N,, N22 N23 N24 e 

\ P2,SI \ A2, S2 9 P2S3 

4 

3 N,, N32,, N33 N34 
j=! 

Fig. 1. Schematic of the survival and harvest processes across 3 years (Y= 3) and 4 age-classes (A = 4) based on age-specif- 
ic survival (Sj = 1,..., 3) and year-specific harvest (pi; i = 1, 2) probabilities. 
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imizing ajoint likelihood model of the form 

LJoint LAgeat-Harvest 'LAuxiliary LReporting * (1) 

The age-at-harvest likelihood (LAge-at-Harvest) 
models the observed harvest numbers as a func- 
tion of recruitment and survival, harvest, and 

reporting rates. An auxiliary likelihood (LAuxiliary) 
must be used to estimate 1 or more of the model 

parameters on abundance, survival, or harvest to 
allow the remaining parameters to be estimated. 
The reporting likelihood (LReporting) supplies 
information on the rates of reporting compliance 
to estimate the harvest reporting parameters in 
the model. If the reporting rate of harvested ani- 
mals is 100%, this third likelihood component 
can be omitted from Equation 1. 

The relative amounts of information in the 3 

components of the joint likelihood Equation 1 
can be quite different. Various investigators have 

suggesting tuning (Gallucci et al. 1996:38, 275) or 

weighting (Quinn and Deriso 1999:335, 391) the 
different contributions to the overall likelihood 
model. The perceived imbalance in information 
has prompted the use of a weighted likelihood 
model of the form 

ln(IJoint) = fln(LAge-at-Harvest) + f2ln(LAuxiiary) 
+ f3n (LReporting), (2) 

3 
where i li = 1 and 0 < f < 1. Gove (1997) inves- 

tigated the use of weighted maximum likelihood 

analysis, but in all cases found the error mean 

square was less using a nonweighted versus a 

weighted likelihood. Therefore, we recommend 
a nonweighted approach to the analysis. Below, 
more detailed descriptions of the individual 
model components are presented. 

Model Construction 
Age-at-Harvest Likelihood.-Gove (1997) investi- 

gated 4 alternative models for the analysis of age- 
at-harvest data. These models differed in assump- 
tions concerning the time varying nature of 
harvest and survival rates. These different models 
are specified as follows: 

Model MpS: Assumes constant survival (S) over 
time and across all age classes, as well as constant 
harvest rate (p) over time and across all age classes. 

Model MpSA: Assumes age-specific survival rates 
(S.) that are constant over time and a harvest rate 

(p) that is constant over time and across age classes. 
Model MpyS: Assumes constant survival (S) over 

time and across age classes and harvest rates that 

vary between years (pi) but are constant across 

age classes. 
Model MpYSA: Assumes age-specific survival 

rates (S.) that are constant over time and harvest 
rates (Pi) that vary between years but are constant 
across age classes. 

The 4 different models (MpS, MpSA, MpyS, and 

MpySA) were selected for presentation in this 
paper because of their general applicability to 
many harvest situations. However, as many as 16 
alternative classes of models can be conceptual- 
ized based on the presence or absence of either 
time- and/or age-dependent survival and harvest 
rates. Within even these model classes (e.g., 
MpYSA), special cases also can be constructed 
based on the specific pattern of the time and/or 
age varying survival and harvest rates. For exam- 
ple, rather than strictly assuming age-specific sur- 
vival rates (i.e., SA), a special case would consist of 
a constant adult survival rate but different from 
subadult age classes. Hence, there is an almost 
unlimited variety of conceptual models from 
which to choose. However, as the models become 
more complex, the data requirements become 
increasingly more demanding, as shown below. 

To illustrate the development of the age-at-har- 
vest likelihood, consider the special case of age- 
specific survival, year-specific harvest, and year- 
specific reporting rates. Let 

N/j = abundance of animals in year i(i = 1,..., Y), 
age class j(j = 1 .... A); 

Sj = probability that an animal in age class j(j= 
1, ..., A - 1) survives to age class j + 1; 

Pi = probability of an animal being harvested in 
year i(i = 1, ..., Y); 

Ri= probability a harvested animal in year i(i = 
1, ..., Y) is reported; 

xi = number of animals in age class j(j = 1,..., A) 
harvested and reported in year i(i = 1, .., Y). 

Then, for example, the expected number of ani- 
mals harvested and reported in age class j = 1 in 
year i = 1 can be expressed as 

E(xll) = N1jplRI. 

Similarly, the expected value of x22 can be ex- 

pressed as 

E(X22) = N 1(l -P1)S1P2R2. 

Here, Si is the complement of the probability of 
mortality from nonhunting, natural causes. By 
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further assuming the fates of the individuals in a 
cohort are independent and identically distrib- 
uted, a multinomial distribution can be used to 
model the observed harvest numbers. A likeli- 
hood model for the first cohort in year 1 (N l) 
harvested over 3 years with age-specific survival 

(Sj) rates and year-specific harvest (Pi) and 

reporting rates (Ri) can be written as follows 

L(N11, p, R, S I x) = 

( N1 (pIR1)XiI((l 
- P) )SIp2R2)X22 

\Xl, X22, X33 ((1 - l)Sl (1 - P2)S2P3R3)33 

[1 - (plR + (1 - pl)Sl2R2 + (1 - P) 
S (1 - P2)S2p3R3)]N1l-xl -x22-x33. (3) 

The construction of a model for the entire set of 
harvest data requires development of ajoint like- 
lihood to describe the expected counts for each 
cohort represented by the diagonals in Fig. 1. 
The overall likelihood model for multiple 
cohorts is a product of the individual cohort like- 
lihoods. The general likelihood model with year- 
specific harvest and reporting rates and age-spe- 
cific survival (Fig. 1) can be written as 

A 

L(N,p,R,S Ix)= L L(Nj,p,,R,,SR 1 x) 
y 

I L(Nil, ,Rp, S, S x) (4) 
i=2 

where A = number of age classes in the data set 
and Y = number of years in the data set. Model 
selection for this likelihood should be based on 

knowledge of the life history and harvest process- 
es for the species and the best model fit to the 
data. In the analysis of the elk harvest data, Models 

MpS and MpyS were considered and compared. 
No stock-recruitment or fecundity relationship 

was used in projecting the number of recruits into 
the first harvestable age class. The lack of assump- 
tions concerning the nature of the recruitment 

process was a major strength of these likelihood 
models. The models neither assume an extrinsi- 

cally nor intrinsically controlled population. 
Instead, recruits were estimated from the history 
of harvest numbers and the assumptions of com- 
mon harvest and/or survival processes across age 
classes. We avoided consideration of age-specific 
harvest rates by modeling only the female com- 

ponent of the population. By doing so, the effects 
of trophy hunting of larger bulls may be avoided. 

Specific assumptions of the age-at-harvest analyses 
included the following: (1) The fate of every animal 
was independent of all other animals. (2) The 

fates of the animals were identically distributed. (3) 
Survival process modeled over time and across 

age classes was correctly formulated. (4) Harvest 

process modeled over time and across age classes 
was correctly formulated. (5) The auxiliary study 
was modeled correctly. (6) Harvest reporting rates 
were estimated unbiasedly. Assumptions 1 and 2 
were necessary for modeling the data as multino- 
mial and have little effect on point estimates but 

may affect variance estimates if violated. Noninde- 

pendence will cause the likelihood model to under- 
estimate the variances because the effective sample 
size is smaller than perceived. On the other hand, 
individual heterogeneity in harvest or survival prob- 
abilities will result in the likelihood model overesti- 

mating the true variance (Feller 1968:231). Investi- 

gators have some control over Assumptions 3-6. 
In lieu of perfect information, post hoc analyses 
using goodness-of-fit statistics were used in model 
selection. For this reason, various approaches to 
model selection will be discussed below. 

Reporting Rate Likelihood.-The harvest counts 

reported in Table 1 resulted from less than 100% 
hunter compliance with the mandatory registra- 
tion of the elk harvest in GMU 4 of Idaho. To 
account for the less than perfect registration, 
telephone surveys, lock checks, or field checks 
can be used to estimate the harvest reporting 
rate. In this study, telephone surveys were used to 
estimate the annual reporting rate. The annual 

reporting rate was modeled as a binomial 

process, as follows: 

L(Ri i ai,bi) = b i tR: (1- Ri)-s n 

where ai = number of successful hunters that 
were interviewed in the ith year (i = 1,... Y), and 
bi = number of hunters who claimed success that 
also had a report card on file for their kill in year 
i (i = 1,... Y). The joint likelihood for the series of 
annual hunter compliance surveys can be ex- 

pressed as 

Leporting 
= L(R a,,b ). 

t=1 
(5) 

An R x C chi-square contingency table test was used 
to test for homogeneity of the reporting rates 
across years and assist in the model selection 

process. A likelihood analogous to Equation (5) 
also could be used to analyze locker check or 
field check data for estimating compliance rates 
with mandatory reporting requirements. 
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Auxiliary Likelihood.-Because age-at-harvest data 
are insufficient to estimate the necessary demo- 

graphic parameters required in population recon- 
struction, auxiliary field investigations are needed 
to provide the missing information. For Model 

MpS, there is 1 more model parameter than there 
are minimum sufficient statistics. As such, auxil- 

iary field studies need to provide information to 
estimate at least 1 model parameter from the list: 

{N,1 N12 .N.NA, N21, N31 ... Nyi NIN1 N2. 
... Ny,p,S}. 

In other words, the investigator must supply inde- 

pendent field information to estimate the abun- 
dance of any cohort in year 1 (i.e., N1 ), recruit- 
ment in any year (i.e., Nil), total abundance (i.e., 

Ni) in any year, harvest rate (p) or annual survival 
rate (S) for estimation of the remaining parame- 
ters under model MpS to be feasible. A variety of 

techniques (Seber 1982) could be used to esti- 
mate the abundance of a specific cohort in a spe- 
cific year or the total abundance (e.g., Ni = Nil + 

N2 + ... + NiA) for a specific year. Alternatively, 
tagging studies using release-recapture methods 

(Cormack 1964, Lebreton et al. 1992) or radio- 

telemetry methods (White and Garrott 1990) 
could be used to estimate survival (S) or harvest 

(p) probabilities. For the example of the elk herd 
in northern Idaho, radiotelemetry was used to 
estimate survival and annual harvest rates. The 

auxiliary study must be designed such that the 

sampling process can be described by a proba- 
bilistic model (i.e., likelihood) that is a function 
of the unknown demographic parameters of 
interest. Although a minimum of 1 parameter 
must be estimable from the auxiliary studies to 
use Model MpS, auxiliary studies could be used to 

provide information on 2 or more parameters 
with the expectation of improving the accuracy 
and precision of the reconstruction. 

For Model MpSA, information on 1 of the 
model parameters from the list: 

{N,1, N, N 21, N 1, ..., N , N2, X 
...NY, S1, S2, ...SA-1 P} 

needs to be estimated from an auxiliary field 

study before the age-at-harvest data can be used 
in population reconstruction. For Model MPyS, 
the auxiliary information requirements are 

greater. To perform population reconstruction 

using Model MPyS, 2 parameters must be 
estimable from auxiliary studies. These 2 para- 

meters must be chosen from among 2 of the dif- 
ferent sets of parameters listed below: 

{N1 1, N12 A, P1, N1. 
{N21 P2, N2.} 

INn, p, Ny. 
IS} 

For Model MPySA, the auxiliary data require- 
ments are similar to that of Model MPyS. Two 

parameters must be estimable from the auxiliary 
field studies chosen from among 2 of the differ- 
ent sets of parameters listed below: 

{N11, N12 ... NA, P, N1.} 
IN21, P2, N2.} 

{Nn, py, Ny 
IS, S2 .... SA-1} 

As a general rule, as the population-reconstruc- 
tion models become more complex, the amount 
of auxiliary information needed to permit popu- 
lation estimation increases. For each additional 
model parameter beyond that of Model MpS, 
auxiliary data will be required to independently 
estimate those additional parameters. For more 

complex reconstruction models, the field re- 

quirement to secure the necessary auxiliary data 
would likely exceed available resources. For this 
reason, only some of the simpler models for age- 
at-harvest analysis are discussed here. 

Radiocollared elk with known fates each year 
were used to estimate survival and harvest proba- 
bilities from an auxiliary likelihood model in the 
Idaho elk example. Elk with collar failures were 
not included in the auxiliary data in the year of 
collar failure (i.e., right-censored). Because the 
elk were not aged at the time of collaring, age- 
specific survival rates could not be estimated. An 

auxiliary likelihood with year-specific harvest 
rates and constant survival using the radioteleme- 

try data (Table 3) can be written as 

L(Pi,S ni,ui,v) = l ) iv 

[( - p,)(l- S)]v [(1- p,)S]' '" (6) 

where ui = number of collared animals that are har- 
vested in year i (i = 1,..., 6), vi= number of collared 
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animals that die from causes other than hunting 
in year i (i = 1, ..., 6), and ni = number of collared 
animals at risk in year i (i = 1,...,6). The joint like- 
lihood model used in the reconstruction analysis is 
then a product of Equations 4, 5, and 6. For Model 

MpS, the annual harvest parameters pi(i = 1, ..., 6) 
were replaced by a common p in Equation 6. 

Parameter Estimation 
Because of the complexity of the joint likelihood 

models, we used iterative numerical methods to 
calculate the maximum likelihood estimates. We 
used the Newton-Raphson method (Seber 
1982:16-17) to obtain the estimates and standard 
errors using Program FLETCH (Fletcher 1970), 
which numerically rather than analytically calcu- 
lates the first and second mixed partial derivatives. 
A copy of the FLETCH program written in For- 
tran or C can be obtained from the authors. 

The program directly estimated the survival, 
harvest, and reporting parameters along with age- 
specific abundance for each cohort in year 1 (i.e., 
N11, N12 ...* NA) and the recruitment into the 
first age class in each subsequent year (i.e., N2, 
N31, ..., Ny). Abundance for the other age class- 
es and total annual abundance for each year were 
estimated secondarily. By the invariance property 
of maximum likelihood estimation, the annual 
abundance estimates from the secondary analy- 
ses were maximum likelihood estimates as well. 

The total abundance estimate for any year is 
the sum of the abundance estimates for the indi- 
vidual age classes in that year, 

A A, 

Ni. = Nil + N,2 +Ni3 +...+N = E ij. 
ji= 

For year 1, the total abundance is the sum of indi- 
vidual estimates by age class. For years 2 through 
Y, one must estimate the abundance of each age 
class from the other abundance estimates and the 
survival and reporting probabilities. For any age 
class in any year (i = 2, ..., Y), the abundance can 
be estimated as 

]iJ -i-l, j--1 S j-1 

For the annual abundance estimates, 95% con- 
fidence intervals were calculated using profile 
likelihood interval estimation (Kalbfleisch and 
Sprott 1970). The profile likelihood confidence 
interval estimates generally are considered supe- 
rior to interval estimates based on the assump- 

tion that MLE are normally distributed. Instead, 
the profile confidence intervals are based on the 
asymptotic properties of the likelihood ratio test 
(LRT), which approaches its nominal x2-distribu- 
tion more rapidly as sample sizes increase. The 
LRT (Hogg and Craig 1995) is based on the dif- 
ference in the log-likelihood values of Equation 1 
under the alternative sets of parameter values 
being considered. 

Model Selection and Goodness-of-Fit 
We used several approaches to determine the 

best model for population reconstruction. One 
can use a x2 goodness-of-fit test based on the ob- 
served age-at-harvest data (x.i) and their expected 
values under the fitted likelihood model. Under 
the null hypothesis of goodness-of-fit, the ratio 

2 
xdf 
df 

should have an expected value of 1 where the 
degrees of freedom (df) equal A x Y- (number of 
estimated parameters). Values greater than 1 may 
suggest overdispersion of the data and lack-of- 
model fit. In generalized linear models (GLM), 
this ratio is called the scale parameter (McCullagh 
and Nelder 1983:80-84, Aitkin et al. 1990:214). 

Pollock et al. (1984) found overdispersal when 
fitting multinomial capture-recapture models to 
data from a lobster (Homarus americanus) popula- 
tion. To compensate for the lack-of-fit, they in- 
creased the maximum likelihood estimates of vari- 
ance by a scale factor similar to that used in 
generalized linear models. We used the same 
approach, adjusting confidence intervals and 
standard errors calculated for the elk study by the 
factor 

Xdf 
df 

When the alternative reconstruction models 
are nested, one also may use an LRT to compare 
1 model to another (Hogg and Craig 1995). 
Another method for comparing models is 
Akaike's Information Criterion (AIC; Burnham 
and Anderson 1998). The AIC uses a function of 
the log-likelihood values (Equation 1) to rank 
and select among alternative model specifica- 
tions. In addition to these tools, one should 
always use knowledge of the population and 
good judgment when determining which model 
is appropriate. For example, if one knows that 
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Table 4. Estimates and standard errors (SE) for the parameters 
that were directly estimated from Model MpS for the cow elk in 
GMU 4, northern Idaho, USA. 

Parameter 

N11 
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P 
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64.53 
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60.70 
41.58 
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24.27 

14.52 
5.70 
9.78 

37.95 
448.30 
463.01 
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360.17 
417.12 

0.0956 
0.9036 

SE 

149.75 
137.01 
94.16 
76.74 

55.75 
54.58 
39.29 
27.30 
17.28 
26.08 
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hunting regulations have changed over time, the 
constant harvest models should be suspect. 

RESULTS 

Idaho Elk Analysis 
The radiocollared elk provided auxiliary infor- 

mation used to estimate survival and harvest 

probabilities (Table 2). Because the elk were not 

aged at the time of collaring, the population 
reconstruction analyses were restricted to Models 

MpS and MpyS. A chi-square test indicated that 
the annual reporting rates (Table 3) for success- 
ful elk hunters differed significantly between 

years (X2 = 328.7, P< 0.001). For this reason, all 

modeling was based on the use of year-specific 
reporting rates. 

Estimates Under Model MpS 
We present in Table 4 the maximum likelihood 

estimates for the parameters of Model MpyS. The 
cow elk abundance estimates by age-class and 

year are given in Table 5. Recruitment of 1-year- 
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Table 6. Estimates and standard errors (SE) for the parameters 
that were directly estimated from Model MpyS for cow elk in 
GMU 4, northern Idaho, USA, 1988-1993. 

Parameter 
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old cow elk into this population ranged from 
360.17 (SE = 134.6) individuals in 1992 to a high 
of 499.50 (SE = 172.1) in 1991 (Table 4). The 
recruitment of 1-year-old elk into this population 
constitutes between 16.0% and 21.8% of the total 
abundance of cow elk each year. The chi-square 
goodness-of-fit statistic for this model (X28= 
152.6771, P < 0.001) is highly significant. Conse- 
quently, reported standard errors and confidence 
intervals from this model were inflated by a scale 
factor of J152.7/78 = 1.3991 to account for 
overdispersion. 

Estimates Under Model MpyS 
We report in Table 6 the demographic parame- 

ters and associated standard errors (SE) estimat- 
ed with Model MpyS. We present in Table 7 the 
estimates of abundance by age class and year, 
along with total annual abundance, reconstruct- 
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ed from the maximum likelihood model. Harvest 
probabilities varied annually from 0.0654 (SE = 

0.0243) to 0.1331 (SE = 0.0464). Total annual abun- 
dance was estimated to be lowest in 1988 with 
2,451.4 (CI [2,235.4 < N< 2,669.8] = 0.95) cow elk 
and with a maximum abundance of 2,770.1 (CI 
[2,588.4 < N< 2,877.5] = 0.95) in 1991. The pop- 
ulation estimates under Model MpyS are higher 
than those calculated under Model MpS because 
the common harvest rate estimated under Model 

MpS is greater than 4 of the 6 annual harvest rates 
estimated under Model MpyS. Overestimation of 
the harvest probabilities will result in negatively 
biased abundance estimates when the harvest 
counts are converted to absolute abundance by 
the factor 1/p. The chi-square goodness-of-fit sta- 
tistic decreased appreciably under Model MpyS 
but remained significant (23 = 94.2, P= 0.048). 
Consequently, confidence intervals and standard 
errors were inflated by the factor /94.2/73 = 
1.1358 to compensate for overdispersion. 

Comparison and Evaluation of Models 

Inspection of Tables 1 and 5 illustrates that esti- 
mates of the age structure of the elk population 
differ depending on whether the raw harvest 
counts or the abundance estimates by cohort are 
used in the estimates of proportions. The raw 
harvest counts underestimate the proportion of 

age class 1 animals in the population and overes- 
timate the proportion of older animals. For ex- 

ample, the harvest numbers would estimate that 
1 year olds compose 16.7% of the population in 

1988; the reconstruction model estimates 21.7%. 
The population reconstruction models help cor- 
rect the bias that would result from the direct use 
of the age-at-harvest data alone in calculating the 

population age-structure. 
For the Idaho elk data, an LRT was performed 

comparing Models MpS versus MpyS. The LRT 
was highly significant (x2 = 30.4186, P < 0.001), 

suggesting that the annual harvest rates may have 
indeed varied between years. During 1988-1990, 
the elk hunting season included a 15-day cow elk 
season that opened around 10 October. During 
1991-1993, the cow elk hunting season was 
reduced to 10 days, opening on 15 October. The 
combination of the goodness-of-fit statistic and 
the LRT together with historic information sug- 
gest that Model MpyS was the most appropriate of 
the available models for this population recon- 
struction. 

In 1990 and again in 1991, aerial surveys of the 
elk herd in GMU 4 were conducted (Kuck and 

Nelson 1991) using the sightability survey model 
of Unsworth et al. (1994). The sightability model 
estimated cow abundance at 2,873 (CI [2167 < N 
< 3,579] = 0.95) in 1990 and 2,217 (CI [1707 < N 
< 2,727] = 0.95) in 1991. Hence, the age-at-harvest 
model estimates compare reasonably well with 
the independent estimates of cow elk abundance. 

DISCUSSION 
The statistical models we present provide a flex- 

ible framework for analyzing age-at-harvest data 
and for model selection. Existing theory to ana- 

lyze tagging studies (e.g., Seber 1982) can be 

readily used to model auxiliary data in conjunc- 
tion with the age-at-harvest models presented. By 
applying maximum likelihood theory to the 

problem of analyzing age-at-harvest data, maxi- 
mum information can be extracted from the 
available data and the limitations of the informa- 
tion objectively assessed. Not only can population 
trends be tracked, but estimates of annual 
recruitment as well as harvest and survival rates 
can be estimated along with their associated vari- 
ances. This statistical approach to analyzing age- 
at-harvest data also provides investigators with 

guidance on what types and how much auxiliary 
information need to be collected to supplement 
the age-at-harvest data and reconstruct popula- 
tion trends. This approach also allows evaluation 
of alternative models and their goodness-of-fit. 
Most existing methods of analyzing age-at-harvest 
data (e.g., Downing 1980, Fryxell et al. 1988) rely 
on "arbitrarily selected lifetime recovery rates" or 
an "educated guess" (Roseberry and Woolf 
1991:22-23), which preclude error estimation, 
formal model selection, or absolute abundance 
estimation. We suggest that biologists work closely 
with biometricians in developing the population 
models and performing the data analyses. These 
maximum likelihood methods also can provide a 
valuable cross-validation of survey results on large- 
game populations. Alternatively, these population 
reconstruction methods can be used to supple- 
ment information in years where large-scale and 

typically costly wildlife surveys are not conducted. 
More effort by the statistical community needs 

to be focused on providing wildlife managers with 
the essential information needed to assess popu- 
lation trends and harvest strategies. The statisti- 
cal methods need to be based on the types of har- 
vest and demographic data most often collected 

by wildlife agencies. These data include estimates 
of harvest, and the age and sex composition of the 

population being monitored. Wildlife tagging 
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studies need to be coordinated with the broader 

demographic needs of population assessment. 

Population reconstruction models provide a use- 
ful context for determining the relevance and con- 
tributions of such tagging studies to the overall 
management of a wildlife population. With the 

increasing demands by society to justify game har- 
vest policies, all available information and the best 

analytical approaches should be used to under- 
stand the status and trends of wildlife populations. 
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