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1 Introduction

The ADMB-foundation is expanding its purpose to keep AD-tools available
to build complex non-linear models (not only AD Model Builder). Tem-
plate Model Builder (TMB) is a new and promising tool, which has been
demonstrated to produce highly efficient code for random effects models
(Kristensen et. al. 2015). A different — but equally important — aspect
of any AD aided model building tool is how feasible it is to extend it. This
report will investigate a few relevant extensions to both tools and evaluate
how feasible these extensions are.

A list of extension were initially formulated to illustrate the type of exten-
sions considered. The list was:

• Implement lacking special functions pbeta, qbeta, besselK ... and
derivatives.

• Implement automatic generator of adaptive p-special functions (e.g.
pbeta) by means of Gauss-Konrad quadrature (like R’s integrate). The
user should implement the density, then TMB/ADMB should auto-
generate adaptive adjoint code based on the assumption that any quadra-
ture is something like sum(w*f(x)).

• Implement automatic generation of adaptive q-special functions (e.g
qbeta). Again the user specifies f(x,theta), then ADMB/TMB solves
f(x,theta)=0 via a Newton method, and the adjoint code is auto-
generated either by implicit function theorem, or via the method in
(B.M Bell and J.V. Burke 2008).

• Implement exact (AD) outer hessian.

• Implement Dave’s suggestion w.r.t. importance sampling. As an alter-
native to N importance samples the suggestion is to repeat the entire
optimization M times and calculate average. It is not know how well
it works, so part of the study is to investigate this.

• Implement forward sub-sweep. The idea is to mark the nodes in the
computational graph, which does not have to be updated when the
function is evaluated (e.g. for the inner problem where the parameters
are kept fixed). For some models this is estimated to give a factor of 5
speedup.

• Expand the template distributions (in ADMB) to be similar to the TMB
density namespace.



This project investigates how feasible these extensions are in either tool,
and illustrates it by actually implementing two or three of the extensions to
compare code the complexity.

2 Differences between ADMB and TMB

In order to understand the following paragraphs one must be aware of some
fundamental design differences between ADMB and TMB. The first major
difference is that TMB uses a fixed computational graph for AD whereas
ADMB allows the computational graph to change between function eval-
uations i.e. uses a dynamical computational graph. There are PROs and
CONs of both approaches:

• The ADMB approach allows the user to include if/else statements in
the objective function even if the branching is parameter dependent.
This is not allowed in TMB. In this respect ADMB is thus more flexible
than TMB.

• The TMB approach avoids a substantial amount of dynamical alloca-
tion and repeated calculations by using a fixed graph. This is probably
one of the main causes of the observed speed difference between TMB
and ADMB.

• The TMB approach is predictable in terms of memory usage from an
early stage of program execution (until the computational graph has
been allocated). This is not the case for ADMB.

From a user perspective it is important to be aware of these difference when
deciding whether its worth porting an existing model from ADMB to TMB.
Much existing code rely on parameter dependent branching (e.g. code using
’mfexp’ in ADMB). When developing extensions to the tools its not always
possible to carry over an ADMB solution to TMB. This is for instance the case
for adaptive algorithms that need to run a variable number of iterations until
a convergence criterion is met.

3 Adding simple functions

3.1 Adding a simple function to ADMB

Here we will quickly run through the steps of adding a simple function to
ADMB.



If we find ourselves lagging a simple function in ADMB it can be declared
as part of the template file where the model is defined. This gives access to
the function within the that model, but (naturally) not for other models in
separate template files. As an example consider a logistic regression model.
To implement this we need the inverse logit function, which is defined as
f (x) = 1

1+exp(−x) . This function is currently not build into ADMB. Declaring
this function within the model template can be done as:
GLOBALS_SECTION

#include <df1b2fun.h>
dvariable invlogit(dvariable x){

return 1/(1+ exp(-x));
}

DATA_SECTION
init_int nobs
init_vector x(1,nobs);
init_vector y(1,nobs);

PARAMETER_SECTION
init_number alpha
init_number beta
vector p(1,nobs)
objective_function_value nll

PROCEDURE_SECTION
nll =0;
for(int i=1; i<=nobs; ++i){

p(i) = invlogit(alpha+beta*x(i));
nll+= -log(p(i))*y(i)-log(1-p(i))*(1-y(i));

}

admbex/lreg.tpl

Setting up a self contained example like this, where the function is added to
the template, or a in a separate file included in the template is a useful way
to test the function. To include such a simple function into ADMB requires
the following steps.

1. Add the source code file to the ADMB source code in the sub-folder
src/linad99 in this case we added a file called invlogit.cpp:
/*
* $Id$
*
* Authors: Anders Nielsen <anders@nielsensweb.org >
*/

/**
* \file
* Inverse logit function.
*/

#include <fvar.hpp >

/**
* Inverse logit function
*/

dvariable invlogit(dvariable x){
return 1/(1+ exp(-x));

}

admb/src/linad99/invlogit.cpp

2. The function header should be added to the file src/linad99/fvar.hpp
in this case we added the line:



dvariable invlogit(dvariable x);

3. Finally we need to add the resulting object file to the list in the file
src/linad99/objects.lst. Here we added the line:
invlogit.obj\

near similar functions.

After this we can recompile ADMB, and the function is now part of the
recompiled version, and the above example works without including the
GLOBALS_SECTION.

The above steps are sufficient to include a function to be used with purely
fixed effects models in ADMB. If a function must be used with random effects
also, then the steps must be repeated in the sub-folder src/df1b2-separable
Briefly:

1. The source file must be added, but the function must be defined using
df1b2variables instead of dvariables.

2. The function header must be added to the file src/df1b2-separable/df1b2fun.h.

3. The name of the resulting object file must be added to the list in the
file src/df1b2-separable/objects.lst.
invlogit.obj\

3.2 Adding a simple function to TMB

A similar function has been added to the TMB distribution (thanks to Mollie
Brooks) by adding the lines
template <class Type >
Type invlogit(Type x){

return Type (1.0) / (Type (1.0) + exp(-x));
}
VECTORIZE1_t(invlogit)

to the file TMB/inst/include/convenience.hpp. The typename ’Type’ refers
to any scalar type and makes the function work for both double and nested
AD double types. This means that the function works to any order as is. The
final line extends the function to also work for vectors.
After the change the TMB package is re-installed by

cd adcomp
make install



4 Implementing special functions - current approaches

Special functions are crucial in statistics. Implementation of such functions
can be a challenge on its own and even more so when combined with auto-
matic differentiation. There are two fundamentally different ways to add a
special function to an AD framework.

1 Differentiate the numerical approximation of the special function us-
ing AD or hand-coded adjoint code. This approach is generally adopted
by ADMB.

2 Derive a differentiation rule for the special function in terms of ex-
isting functions in the AD framework or the function itself. Now the
special function can be added as an ’atomic’ function. This is the ap-
proach currently used in TMB.

Both approaches have strenghts and weaknesses.

Method 1 There is no guarantee that the derivative of a function approxi-
mation is a good representation of the function’s derivative. As an example
of what could go wrong, consider the following numerical scheme: For a
fine grid of x-values xi the function values yi = f (xi) are pre-computed and
a quadratic spline is fitted through the points (xi,yi). While this approach
works excellent for the function value it is very bad for the function deriva-
tives. The 3rd order derivative is everywhere zero.
The numerical scheme must fulfill convergence properties not only for the
function value but also for the derivatives. Good numerical schemes are
often adaptive which can lead to unpredictable memory usage if applying
reverse mode AD directly on the scheme (this is only relevant for ADMB as
TMB is unable to use adaptive algorithms as previously mentioned).

Method 2 The main problem with this method is that sometimes there is
no simple expression for the derivative of a the given special function. The
derivatives might introduce new special functions for which no known nu-
merical evaluation scheme exists. In those cases one would have to develop
ways to evaluate the new special functions accurately and efficiently which
can be very challenging.

In the following sections we will demonstrate how the two methods can be
used in ADMB and TMB to implement some selected special functions.



4.1 TMB pbeta implementation - a first attempt

Example 1: pbeta The (incomplete) CDF of the beta distribution is not
part of TMB. It is given by:

f (y,α,β ) =
∫ y

0
xα−1(1− x)β−1 dx

The partial derivative wrt. y is

∂y f (y,α,β ) = yα−1(1− y)β−1

We see that this derivative is expressed in terms of standard functions. How-
ever, derivatives wrt. the parameters introduce new special functions:

∂α f (y,α,β ) =
∫ y

0
xα−1(logx)(1− x)β−1 dx

The family of incomplete beta integrals is obviously not closed under differ-
entiation. In order to obtain a closed family we define a generalized function
that includes all higher order partial derivatives:

f (y,α,β ,m,n) :=
∫ y

0
xα−1(log(x))m(1− x)β−1(log(1− x))n dx (1)

This “symbol” is closed under differentiation:

∂y f (y,α,β ,m,n) = xα−1(log(x))m(1− x)β−1(log(1− x))n

∂α f (y,α,β ,m,n) = f (y,α,β ,m+1,n)

∂β f (y,α,β ,m,n) = f (y,α,β ,m,n+1)

The function (1) can thus be added to the derivatives table as a native sym-
bol. The special case m = n = 0 gives the incomplete beta CDF.
namespace atomic {

void integrand_D_incpl_beta(double *x, int nx , void *ex){
double* parms = (double *)ex;
double alpha = parms [0];
double beta = parms [1];
int m = parms [2];
int n = parms [3];
for(int i=0; i<nx; i++){

x[i] =
pow(x[i], alpha - 1.0) *
pow(log(x[i]), m) *
pow (1.0 - x[i], beta - 1.0) *
pow(log (1.0 - x[i]), n);

}
}
/* n’th order derivative of (scaled) incomplete gamma wrt. shape

parameter */
double D_incpl_beta(double x,

double alpha , double beta ,
double m, double n){

/* Control tolerance of R’s integrate */
double epsabs = 1e-10, epsrel = 1e-10, abserr =1e4;
int neval = 1e4, ier = 0, limit = 1e2, last = 0;
int lenw = 4 * limit;
/* Workspace */



int* iwork = (int*) malloc(limit * sizeof(int));
double* work = (double *) malloc(lenw * sizeof(double));
/* Parameters */
double ex[4];
ex[0] = alpha;
ex[1] = beta;
ex[2] = m;
ex[3] = n;
double result = 0;
double a = 0.0; /* Lower integration bound */
double b = x; /* Upper integration bound */
Rmath:: Rdqags(integrand_D_incpl_beta , ex, &a, &b,

&epsabs , &epsrel , &result , &abserr ,
&neval , &ier , &limit , &lenw , &last ,
iwork , work);

if(ier != 0){
#ifndef _OPENMP

warning("incpl_beta (def) integrate unreliable: "
"x=%f alpha=%f beta=%f n=%f m=%f ier=%i",
x, alpha , beta , n, m, ier);

#endif
}
free(iwork);
free(work);
return result;

}

/* Register native symbol with derivatives */
TMB_ATOMIC_VECTOR_FUNCTION(

// ATOMIC_NAME
D_incpl_beta
,
// OUTPUT_DIM
1
,
// ATOMIC_DOUBLE
ty[0] = D_incpl_beta(tx[0],

tx[1],
tx[2],
tx[3],
tx[4]);

,
// ATOMIC_REVERSE
Type x = tx[0];
Type alpha = tx[1];
Type beta = tx[2];
Type m = tx[3];
Type n = tx[4];
Type one = 1.0;
px[0] =
pow(x, alpha - one) *
pow(log(x), m) *
pow(one - x, beta - one) *
pow(log(one - x), n) *
py[0]; // Partial wrt. x
CppAD ::vector <Type > tx_(tx);
tx_ [3] = tx_[3] + one; // Partial wrt. alpha
px[1] = D_incpl_beta(tx_)[0] * py[0];
tx_ [3] = tx_[3] - one;
tx_ [4] = tx_[4] + one; // Partial wrt. beta
px[2] = D_incpl_beta(tx_)[0] * py[0];
px[3] = 0; // m is a constant
px[4] = 0; // n is a constant
)

}

/** Beta CDF function

Same as pbeta from R.
\note Non -centrality parameter (ncp) not implemented.

*/
template <class Type >
Type pbeta(Type q, Type shape1 , Type shape2){

CppAD ::vector <Type > tx(5);
tx[0] = q;
tx[1] = shape1;
tx[2] = shape2;
tx[3] = 0;
tx[4] = 0;
Type ans = atomic :: D_incpl_beta(tx)[0];
Type logBeta =

lgamma(shape1) +



lgamma(shape2) -
lgamma(shape1 + shape2);

return ans / exp(logBeta);
}

tmb/atomic_beta.hpp

When testing the accuracy of our new special function we found that it had
poor accuracy for shape parameters near the boundary. Futhermore, the
performance was not acceptable. In particular the cheap gradident princi-
ple did not hold. We therefore discarded this implementation.
The example demonstrates that there is no easy/automatic way to imple-
menting special functions. Numerical integration should only be used as a
last resort.

4.2 Implementing pbeta in ADMB

Implementing pbeta was simple, because a function betai was already to
be found in the source code of ADMB. The function betai is the incomplete
beta function, which is the same thing as pbeta.

To make the function more accessible and easier to find we introduced an
alias pbeta same arguments as the similar function in TMB and in R. This
was as simple as:
/** beta distribution function for variable objects (alias of ibeta function with same

arguments order as in {\bf R}).
\param x \f$x\f$
\param a \f$a\f$
\param b \f$b\f$
\param maxit Maximum number of iterations for the continued fraction approximation in

betacf.
\return Incomplete beta function \f$I_x(a,b)\f$

\n\n The implementation of this algorithm was inspired by
"Numerical Recipes in C", 2nd edition ,
Press , Teukolsky , Vetterling , Flannery , chapter 2

*/
dvariable pbeta(const dvariable x, const dvariable a, const dvariable b, int maxit){

return betai(a, b, x, maxit);
}

The implemented betai functions only supported scalar arguments for x, a,
and b. To make the pbeta function more easily useful it should support vec-
tor arguments also. So just counting the number of possible combinations
within the constant types (not keeping track of derivatives) this would lead
to 8 combinations (S,S,S), (V,S,S), (S,V,S), (S,S,V), (V,V,S), (V,S,V), (S,V,V),
(V,V,V), all of which would have to be written with appropriate loops for the
vector arguments. Similarly we would need 8 combinations for the number
type used for purely fixed effects models (dvariable), and 8 combinations
for the number type used for random effects models (df1b2variable). It
is a mess to write all of these functions for the pbeta function, but con-
sider doing this for all the functions in ADMB. Frequent users of AD Model



builder know that sometimes a specific needed combination of arguments is
not implemented and that they simply need to write the loop.

Template Model Builder has a semi-automated way to generate the vector-
ized versions. It uses C++ macros, such that the C++ preprocessor ex-
pands the different vectorized versions from the scalar version. This macro
has been modified to work with ADMB and included in the source tree. The
code is:
// Copyright (C) 2013 -2015 Kasper Kristensen
// Modified for ADMB by Anders Nielsen
// License: GPL -2

/** \file
\brief Macros to do vectorization.
*/

#include <df1b2fun.h>

template <class VT>
struct getScalarType{
};

template <>
struct getScalarType <dvector >{

typedef double scalar;
};

template <>
struct getScalarType <dvar_vector >{

typedef dvariable scalar;
};

template <>
struct getScalarType <df1b2vector >{

typedef df1b2variable scalar;
};

// typename getVectorType <dvariable >:: vector

// Function body type declarations
// V=vector , T=scalar , I=integer , N=none
//#define declareV(arg) const dvar_vector &arg
#define declareV(arg) const VectorType &arg
#define declareT(arg) typename getScalarType <VectorType >:: scalar arg
#define declareI(arg) int arg
#define declareN(arg)
// How to extract elementwise subset of the four types
#define elementV(arg ,i) (typename getScalarType <VectorType >:: scalar) arg[arg.indexmin ()+i]
#define elementT(arg ,i) arg
#define elementI(arg ,i) arg
#define elementN(arg ,i)
// How to place comma in front of the types
#define commaV ,
#define commaT ,
#define commaI ,
#define commaN
// Update output vector size
#define outputsizeV(n,arg) n = ((arg.indexmax ()-arg.indexmin ()+1)>n ? (arg.indexmax ()-arg.

indexmin ()+1) : n)
#define outputsizeT(n,arg)
#define outputsizeI(n,arg)
#define outputsizeN(n,arg)
/** \brief General vectorize macro up to 6 arguments

Applied type abbreviations: V=vector , T=scalar , I=integer , N=none.
The longest vector input determines the length of the output.
Arguments are not re -cycled; unequal vector lengths should result
in a crash.

*/
#define GVECTORIZE(FUN ,Type1 ,Type2 ,Type3 ,Type4 ,Type5 ,Type6) \
template <class VectorType > \
VectorType FUN( declare ##Type1(arg1) comma##Type2 \

declare ##Type2(arg2) comma## Type3 \
declare ##Type3(arg3) comma## Type4 \
declare ##Type4(arg4) comma## Type5 \
declare ##Type5(arg5) comma## Type6 \
declare ##Type6(arg6) ) \

{ \



int n = 0; \
outputsize ##Type1(n,arg1); \
outputsize ##Type2(n,arg2); \
outputsize ##Type3(n,arg3); \
outputsize ##Type4(n,arg4); \
outputsize ##Type5(n,arg5); \
outputsize ##Type6(n,arg6); \
VectorType res(1,n); \
for(int i=0;i<n;i++) res[i+1] = FUN( element ## Type1(arg1 ,i) comma ##Type2 \

element ## Type2(arg2 ,i) comma##Type3 \
element ## Type3(arg3 ,i) comma##Type4 \
element ## Type4(arg4 ,i) comma##Type5 \
element ## Type5(arg5 ,i) comma##Type6 \
element ## Type6(arg6 ,i) ); \

return res; \
}

/** \brief Vectorize 1-argument functions. */
#define VECTORIZE1_t(FUN) \

GVECTORIZE(FUN ,V,N,N,N,N,N)

/** \brief Vectorize 2-argument functions.

For two -arguments functions (Type , Type),
vectorize both arguments.

*/
#define VECTORIZE2_tt(FUN) \

GVECTORIZE(FUN ,V,T,N,N,N,N) \
GVECTORIZE(FUN ,T,V,N,N,N,N) \
GVECTORIZE(FUN ,V,V,N,N,N,N)

/** \brief Vectorize 3-argument functions.

For three -arguments functions (Type , Type , int),
vectorize first two arguments.

*/
#define VECTORIZE3_tti(FUN) \

GVECTORIZE(FUN ,V,T,I,N,N,N) \
GVECTORIZE(FUN ,T,V,I,N,N,N) \
GVECTORIZE(FUN ,V,V,I,N,N,N)

/** \brief Vectorize 3-argument functions.

For three -arguments functions (Type , Type , Type),
vectorize all three arguments.

*/
#define VECTORIZE3_ttt(FUN) \

GVECTORIZE(FUN ,V,T,T,N,N,N) \
GVECTORIZE(FUN ,T,V,T,N,N,N) \
GVECTORIZE(FUN ,T,T,V,N,N,N) \
GVECTORIZE(FUN ,V,V,T,N,N,N) \
GVECTORIZE(FUN ,T,V,V,N,N,N) \
GVECTORIZE(FUN ,V,T,V,N,N,N) \
GVECTORIZE(FUN ,V,V,V,N,N,N)

/** \brief Vectorize 4-argument functions.

For Four -arguments functions (Type , Type , Type , int),
vectorize first three arguments.

*/
#define VECTORIZE4_ttti(FUN) \

GVECTORIZE(FUN ,V,T,T,I,N,N) \
GVECTORIZE(FUN ,T,V,T,I,N,N) \
GVECTORIZE(FUN ,T,T,V,I,N,N) \
GVECTORIZE(FUN ,V,V,T,I,N,N) \
GVECTORIZE(FUN ,T,V,V,I,N,N) \
GVECTORIZE(FUN ,V,T,V,I,N,N) \
GVECTORIZE(FUN ,V,V,V,I,N,N)

/** \brief Vectorize 6-argument functions.

For Six -arguments functions (Type , Type , Type , Type , Type , int),
vectorize first three arguments.

*/
#define VECTORIZE6_ttttti(FUN) \

GVECTORIZE(FUN ,V,T,T,T,T,I) \
GVECTORIZE(FUN ,T,V,T,T,T,I) \
GVECTORIZE(FUN ,T,T,V,T,T,I) \
GVECTORIZE(FUN ,V,V,T,T,T,I) \
GVECTORIZE(FUN ,T,V,V,T,T,I) \
GVECTORIZE(FUN ,V,T,V,T,T,I) \
GVECTORIZE(FUN ,V,V,V,T,T,I)



// functions vectorized
VECTORIZE3_ttt(pbeta);

admb/src/tools99/Vectorize.hpp

The line at the end stating that:
VECTORIZE3_ttt(pbeta);

Is the specific code needed to expand the pbeta function to support all 24
combinations outlined above.

These macros should be useful for anyone adding new functions to ADMB,
but also for single users adding their own functions within their templates.
As an example consider this model formulation:
GLOBALS_SECTION

#include <fvar.hpp >
dvariable logBH(dvariable ssb , dvariable loga , dvariable logb){

return loga+log(ssb)-log (1+exp(logb)*ssb);
}
#include <Vectorize.hpp >
VECTORIZE3_ttt(logBH);

DATA_SECTION
init_int n
init_vector ssb(1,n)
init_vector logR(1,n)

PARAMETER_SECTION
init_number loga;
init_number logb;
init_number logSigma;
sdreport_number sigmaSq;
vector pred(1,n);
objective_function_value nll;

PROCEDURE_SECTION
sigmaSq=exp (2.0* logSigma);
pred=logBH(( dvar_vector)ssb ,loga ,logb);
nll =0.5*(n*log(2* M_PI*sigmaSq)+sum(square(logR -pred))/sigmaSq);

admbex/bh.tpl

Here a user defined function is vectorized via the macro and the loops can
be avoided in the user template.

4.3 Implementing qbeta in ADMB

The existing ADMB function inv_cumd_beta_stable is intended to be the
quantile function for the beta distribution, so it was expected to be simple to
create an alias (qbeta) for that function. Unfortunately two problems with
the implementation were discovered.

Accuracy Running a few examples gave concern about the accuracy of
inv_cumd_beta_stable function, so it was decided to compare it to the
build-in R function qbeta. A grid of reasonable values for the three inputs
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Figure 1: Three different implementations of the quantile function for the
beta distribution with α = 0.08 and β = 0.14.

p, α, and β was constructed For p values in
[
10−6;1−10−6

]
and for the two

shape parameters values in [0.03;500] were tested (so no extremes).

The errors were higher than expected. For instance the input arguments
p = 0.473684, α = 0.08, and β = 0.14 gave a quantile of 0.36364. The correct
answer according to R is 0.020135, so not a small difference. A plot of the
two functions illustrates the problem (Fig. 1). The existing ADMB function
was not correct, as the flat part in the middle does not correspond to a beta
distribution. There is no reason to doubt the accuracy of the implementation
in R.

Over the grid points the range of errors in the existing ADMB function (com-
pared to the R function) spanned from -0.84 to 0.68 with a root mean square
error (RMSE) of 0.06.



The code for the existing function was inspected and experimented with, but
the cause of the error was not identified. It was noted that the numerical
function solver worked on a transformed scale, which seemed unnecessary.
The code was rewritten to work on the untransformed scale and the accu-
racy problem disappeared (green dots on Fig. 1).

Over the grid points the range of errors in the new ADMB function (com-
pared to the R function) spanned from -1e-9 to +1e-9 with a RMSE of 1.6e-
11.

The code for both the new and the old version of inv_cumd_beta_stable
are not included in this report, but can be found in the file:
admb/src/linad99/ccumdbetainv.cpp

In addition an alias qbeta is introduced, to allow the function to be called
with same arguments as the similar function in R .

Derivatives The derivatives were first checked by running a small models
using the qbeta function and validating that the finite difference approxima-
tions were matching the automated first derivatives. In models with random
effects the function value itself depends on the second derivatives, so when
validating the first derivatives of such a model it is validating up to the third
derivatives (although in an indirect way).

It was discovered that it was difficult to match the final decimals of the
derivatives, so a closer inspection was necessary. All the derivatives (up to
third order) is coded up in the file
admb/src/df1b2 -separable/df1b2invcumdbeta.cpp

This file was modified to print all the derivatives 1., 2., and 3. order,
and these were compared to finite difference approximations (from the
numDeriv package in R ). Exactly one of the third derivatives was differ-
ent (about a factor of two in our example). The error was identified and
corrected as indicated here:

double F_yzz=-(F_xxx * square (*z.get_u_z ())* *z.get_u_y ()
+2.0* F_xxz * *z.get_u_z () * *z.get_u_y ()
+2.0* F_xyz* *z.get_u_z ()
+F_xxy*square (*z.get_u_z ())
+2.0* F_xx* *z.get_u_z () * *z.get_u_yz ()
+F_xx* *z.get_u_y () * *z.get_u_zz ()
+2.0* F_xz* *z.get_u_yz ()
// +F_xy * *z.get_u_zz ()* *z.get_u_y () //** original
+F_xy * *z.get_u_zz () //** corrected to
+F_xzz * *z.get_u_y ()
+F_x * *z.get_u_yzz ());



After correcting this all derivatives exactly matched the finite difference ver-
sions.

It was difficult to compare, validate and correct these derivatives, so it is of
interest to develop a simpler way to obtain efficient and correct derivatives
of such special functions. Further a build in tool for directly validating the
higher order derivatives (like for first order) would be very useful.

4.4 Checking higher order derivatives in ADMB

In the previous example (the qbeta function) the higher order derivatives
were evaluated by going into the code for the function and adding state-
ments to print out the derivatives, recompile AD Model Builder and run a
simple example. This procedure is not generally possible, as most functions
in ADMB does not have the access to the higher order derivatives within.

To develop correct code it is important to be able to validate — especially
the difficult derivative calculations. ADMB has an easy interface to compar-
ing the first order derivatives to finite difference approximation. For random
effects models the likelihood to be optimized depends on the second deriva-
tives, so validating the first derivatives of that is indirectly validating the
third order derivatives of the contributing functions.

If it is discovered that the first order derivatives of a random effects model
are wrong it is currently difficult to trace which of the second or third order
derivatives are causing it.

A current useful kludge to get the second derivatives has been added to
ADMB (in the files src/df1b2-separable/df1b2lap.cpp and src/df1b2-separable/df1b2lp1.cpp).

The second derivatives of the joint negative log likelihood `(x,θ ,u) w.r.t. the
random effects u are used in the Laplace approximation and that is only
place they are evaluated in AD Model Builder. The added code prints out
the second derivatives at that point and makes sure the point of evaluation
is exactly as specified.

In order to get exactly the derivatives wanted, e.g. for a specific function,
the joint negative log likelihood specified must be equal to the function
plus a penalty which guards the Laplace approximation against failing for
numerical reasons. This penalty can in principle be anything large enough,
but since it need to be subtracted from the reported second derivatives it
should be chosen moderately to avoid floating point imprecisions creeping
in.

Example second derivatives of pbeta: To evaluate the second order deriva-
tives of the pbeta(q,a,b) function at the point (0.1, 0.2, 0.3) the following
code can now be used:



GLOBALS_SECTION
extern double CHECK_HESSIAN_PENALTY;

DATA_SECTION

PARAMETER_SECTION
init_number dummy
random_effects_vector u(1,3);
objective_function_value nll

PROCEDURE_SECTION
CHECK_HESSIAN_PENALTY =10;
ad_comm :: print_hess_and_exit_flag=true;
dvariable q=0.1+u(1), a=0.2+u(2), b=0.3+u(3);
dvariable fun=pbeta(q,a,b);
nll=fun+( CHECK_HESSIAN_PENALTY)*sum(square(u));

admbex/dd2.tpl

The code must be compiled, like any ADMB program, and then run with the
command line flags -imaxfn 0 -noinit, as in:
./dd2 -imaxfn 0 -noinit

The output produced will contain the second derivatives, here:
--------------------------------------------------------------------

Hess:
-6.33117760106491 0.8967385470621572 1.256776070934514
0.8967385470621574 7.830304687659307 -0.4582248852821856
1.256776070934514 -0.4582248852821875 -2.058709916695477

--------------------------------------------------------------------

These second derivatives can then be validated against analytically derived,
or finite difference approximations. Currently the R-package numDeriv can
be helpful to get second order finite difference approximations, but long
term such approximations should also be part of ADMB.

4.5 Implementing Bessel functions in ADMB

ADMB did not have a build-in Bessel functions. Bessel functions are solu-
tions to Bessel’s differential equation, but for statistical applications they
mainly appear as part of the normalizing constant in probability density
functions (e.g. von Mises and Skellam distributions).

The code for the different Bessel functions were copied from the code in
Numerical Recipes and modified to be used with the different AD Model
Builder types for constant, first order, and third order AD. Finally aliases
were added to allow the functions to be called with the same arguments, in
the same order as in R .
admb/src/linad99/cbessel.cpp
admb/src/linad99/vbessel.cpp
admb/src/df1b2 -separable/df1b2bessel.cpp



The implementation supplies the functions besselI(x,ν), besselK(x,ν), besselJ(x,ν),
and besselY(x,ν), where the argument x >= 0 and the order ν is an integer.

Testing the precision of the Bessel functions

The implemented functions were compared to the corresponding functions
in R in on a grid of 10000 points (x,ν). Values of x between 0.0001 and 25
and values of ν in {1,2,. . . ,10} were tested.

For the four Bessel functions the maximum absolute relative error was 2.1e-
5, and the average absolute relative difference was 1.9e-8.

Example using Bessel function

The von Mises distribution is a continuous probability distribution on an
interval (e.g. on an interval from 0 to 2π). The distribution is circular,
such that the density has the same value in both ends of the interval. The
distribution is also known as the circular normal distribution, and could be
suitable to describe observed angles or observed times within a year. The
probability density function is given by:

f (x,µ,κ) =
eκ cos(x−µ)

2πI0(κ)

Here the function I0(κ) in the denominator is the modified Bessel function
of order 0.

Assuming that x1,x2, . . . ,xN is observed from a von Mises distribution the
model is can be implemented in ADMB as:
DATA_SECTION

init_int N
init_vector X(1,N)

PARAMETER_SECTION
init_bounded_number mu(0,2* M_PI)
init_number logKappa
sdreport_number kappa
objective_function_value nll;

PROCEDURE_SECTION
kappa=exp(logKappa);
// Von Mises -logL:
nll = -kappa*sum(cos(X-mu))+N*log(2* M_PI)+N*log(besselI(kappa ,0));

admbex/bess.tpl

5 A unified approach to special functions: tiny_ad

Hand coding higher order derivatives has been shown to be a challenging
task that can easily go wrong. In this section we propose an automatic



solution to the problem that works in TMB as well as in ADMB. In general
special functions have a low number of input parameters - one to three is
typical. For such small inputs we can obtain a good AD efficiency using naive
forward mode automatic differentiation as opposed to reverse mode AD.
The forward differentiated functions can be plugged into the reverse mode
AD framework of TMB and ADMB. Forward mode AD has the following
advantages:

• No need to build a computational graph so adaptive algorithms are
easily handled.

• Low memory usage.

• Easy to get higher order derivatives using C++ template techniques.

5.1 Implementation of tiny_ad

A small forward mode library ’tiny_ad’ was implemented (less than 300 lines
of code). Here is a demonstration of how it works:
template <class Type , class Vector >
struct ad {

// Data
Type value;
Vector deriv;
// Constructors
ad(){}
ad(Type v, Vector d) { value = v; deriv = d; }
ad(double v) { value = v; deriv.setZero (); }
// Derivative rule of addition operator
ad operator+ (const ad &other) const {

return ad(value + other.value ,
deriv + other.deriv);

}
// Derivative rule of multiplication operator
ad operator* (const ad &other) const {

return ad(value * other.value ,
value * other.deriv +
deriv * other.value);

}
// Remaining derivative rules ...

};

This is almost a classic way to implement tapeless forward mode AD by op-
erator overloading. The type ’ad’ contains a scalar (the value) and a vector
of derivatives. The scalar type as well as the vector type are template argu-
ments to the class.
By inserting an ’ad’ type as scalar type we automatically get 2nd (and higher)
order derivatives. Having a templated scalar type thus give us higher order
derivatives ’for free’.
The ability to switch between different vector classes serves two purposes.
First, ADMB and TMB do not share the same underlying vector class. It
would be natural to use Eigen’s vector class in TMB but inconvenient to re-
quire the Eigen library included in ADMB. Secondly, it is useful to be able to



switch between vector classes in order to investigate the vector class impact
on AD performance.

5.2 The three vector classes

We considered the following vector class options that can be switched be-
tween using a preprocessor flag:

valarray A fixed size specialization of the dynamic sized vector container std::valarray
was implemented. The idea is that this is already available for TMB
and ADMB wihout the need to include additional code. This class is
enabled in tiny_ad by adding ’-DTINY_AD_USE_STD_VALARRAY’ to
the preprocessor.

Eigen The Eigen library provides fixed size containers. It is able to optimize
vector expressions at compile time which should give faster execu-
tion. This class is enabled in tiny_ad by adding the preprocessor flag
’-DTINY_AD_USE_EIGEN_VEC’.

tiny_vec To avoid the Eigen dependency we implemented a small fixed size vec-
tor class from scratch. It comes close to Eigen wrt. performance al-
though tiny_vec does not use expression templates for compile time
optimization. This class is intended to be used as default with tiny_ad.
Currently enabled with the preprocessor flag ’-DTINY_AD_USE_TINY_VEC’.

offset (bytes) ad<valarray> ad<EigenVector> ad<tiny_vec>
0 Value Value Value
8 Length Empty 1st derivative
16 Pointer 1st derivative 2nd derivative
24 2nd derivative
32

Table 1: Example of memory layout of the ad type in the case where the
derivatives vector has length equal to 2 for the three different vector classes
(columns).

Unfortunately valarrays do not perform well inside our AD class. The reason
can be seen from Table 1 second column. A valarray consists of a pointer to
a separate pool of data and a vector length. The size of an AD structure with
this valarray vector is only 24 bytes independent of the number of parame-
ters. However, each new AD struct instance invokes the dynamic memory
allocator introducing way too much overhead. The allocated derivatives
data might end up far apart from the value. This is unfortunate as we know



that the AD algorithm always needs derivatives and value simultanously.
The Eigen class outperformed valarrays with a factor 20-40 in some early
benchmarks. The memory layout is shown in the third column. Notably,
Eigen guaranties that data is 16 bytes aligned in order to utilize SIMD
instructions. Gcc requires same alignment for the value member. Conse-
quently there is unused space between derivatives and value.
Final column shows the memory layout for the tiny_vec class. This is the
most direct layout of the three.

5.3 Theory of tiny_ad

Let x be a variable that depends on some parameters θ . A tiny_ad variable
x̃ packs the value and a number of derivatives into a single structure. For
simplicity assume that there is only one parameter i.e. the vector length in
the tiny_ad class is one. The structure then contains:

x̃ =
(

x,
∂

∂θ1
x
)

Denote by vec<n, type> our vector structure of length n with elements of
type ’type’. Then x̃ corresponds to the structure

ad<double, vec<1,double> >

Now let’s see what happens when this structure is used as scalar type in a
new tiny_ad struct. Assume that we want derivatives wrt. a new parameter
θ2. Packing the previous value x̃ and its derivative into a single structure
yields

˜̃x =
(

x̃,
∂

∂θ2
x̃
)
=

(
x,

∂

∂θ1
x,

∂

∂θ2
x,

∂ 2

∂θ1∂θ2
x
)

In template syntax this nested structure is given by

ad<ad<double,vec<1,double>>,vec<1,ad<double,vec<1,double>>>>

So, by running an algorithm on this type we are able to track any given 2nd
order cross partial derivative. When multiple cross-partials are sought we
can take advantage of the vector class inside the ad struct. It allow us to
have multiple derivatives associated with a single value. We could start by
setting up a type to track two derivatives:

x̃ =
(

x,
∂

∂θ1
x,

∂

∂θ2
x
)

the corresponding type that tracks these derivatives is

ad<double, vec<2,double> >



By nesting this type into one of the same kind we get

˜̃x =

(
x,

∂

∂θ1
x,

∂

∂θ2
x,

∂

∂θ1

(
x,

∂

∂θ1
x,

∂

∂θ2
x
)
,

∂

∂θ2

(
x,

∂

∂θ1
x,

∂

∂θ2
x
))

=

(
x,

∂

∂θ1
x,

∂

∂θ2
x,

∂

∂θ1
x,

∂ 2

∂θ 2
1

x,
∂ 2

∂θ1∂θ2
x,

∂

∂θ2
x,

∂ 2

∂θ1∂θ2
x,

∂ 2

∂θ 2
2

x
)

There is a substantial amount of bookkeeping involved working with these
deeply nested structures. The same derivatives occur at multiple locations
in the structure thus one must be careful when seeding the object (setting
derivatives to one before running an algoritm). The same holds for get-
ting the relevant information out of the object once a calculation is com-
pleted. To make things easier for the user we have introduced a class
variable<n,m> that carries out all bookkeeping for the case where all nthe
order derivatives wrt. m variables are calculated.

Example How to get 3rd order derivatives wrt. 2 variables using tiny_ad.
#include "tiny_ad.hpp"
int main() {

typedef tiny_ad ::variable <3, 2> Float; // Track 3rd order derivs wrt. 2 parameters
Float a (1.23, 0); // Let a=1.23 have parameter index 0
Float b (2.34, 1); // Let b=2.34 have parameter index 1
Float y = a * sin(a + b); // Run the algorithm
std::cout << y.getDeriv () << "\n"; // Get all 3rd order derivatives

}

The code produces the output

[ 2.36511 1.94969 1.94969 1.53427 1.94969 1.53427 1.53427 1.11884 ]

which should be regarded as a 2-by-2-by-2 array. There is no ambiguity in
the order of the array due to symmetry of the higher order derivatives. We
could dig a bit deeper into the underlying structure by replacing the final
print statement with

std::cout << y << "\n"; // Print underlying structure

Then the following output is produced

{ value={ value={ value=-0.51097 deriv=[ -1.53427 -1.11884 ]} deriv=[
{ value=-1.53427 deriv=[ -1.30829 -0.398659 ]} { value=-1.11884
deriv=[ -0.398659 0.51097 ]} ]} deriv=[ { value={ value=-1.53427
deriv=[ -1.30829 -0.398659 ]} deriv=[ { value=-1.30829 deriv=[ 2.36511
1.94969 ]} { value=-0.398659 deriv=[ 1.94969 1.53427 ]} ]} { value={
value=-1.11884 deriv=[ -0.398659 0.51097 ]} deriv=[ { value=-0.398659
deriv=[ 1.94969 1.53427 ]} { value=0.51097 deriv=[ 1.53427 1.11884 ]}
]} ]}



This is an example of the deeply nested structure containing all possible
derivatives from order 0 to order 3 (with some duplicates).

5.4 Expected performance of tiny_ad

As previously noted we can represent a value and n derivatives

x̃ =
(

x,
∂

∂θ1
x, ...,

∂

∂θn
x
)

by the structure
ad<double, vec<n,double> >

Under a few simplifying assumptions one can estimate the time it takes to
calculate the gradient versus the function value for some of the basic arith-
metic operators. For instance the addition x̃+ ỹ requires n+ 1 elementary
additions. The gradient/function work ratio is thus n + 1. Likewise the
x̃ ∗ ỹ operation requires 1+2n elementary multiplications and n elementary
additions. Assuming equal work of multiply and add we get a work ra-
tio of 3n+ 1. Assume further that a builtin special function such as exp,
log, sin or cos requires at least 10 times the work of an elementary mul-
tiplication. As an example the calculation sin(x̃) expands to the evalua-
tion of function value sin(x), derivative cos(x) and n multiplications for the
chain rule. The resulting gradient/function work ratio is thus bounded by
work(1× sin+1× cos+n×multiply)/work(1× sin) = 2+ n

10 .

Operator work( f ) work(d)
Addition 1 1+n
Multiplication 1 1+3n
sin,cos etc. 10 20+n

Table 2: Estimated upper bound of gradient to value work ratio for different
operators assuming that 1. n derivatives are calculated. 2. The work of
multiply and add is the same. 3. The work of a builtin special function is at
least 10 times the work of a multiplication.

The results are summarized in Table 2. More generally, the cost of the kth
order derivatives are found by the formula

work(d(k)) =

 1+n 0 0
n 1+2n 0
0 n 2

k 1
1
10


for any k ≥ 0.
Can we maintain a cheap gradient principle (work(gradient)/work( f unction)<



4) for reverse mode AD when plugging in the forward mode differentiated
functions? Apparently the answer heavily depends on what operations are
used by the algorithm. An algorithm dominated by multiplication seems
to have problems already for more than one parameter. In contrast an al-
gorithm where builtin special functions dominate can maintain the cheap
gradient principle for more than 10 parameters.

There are two important factors that affect the forward mode approach in a
positive direction: instruction level parallelism and CPU register usage. As an
example consider the following recursive procedure consisting of multiply
and addition:
template <class Float >
Float test(Float a, Float b) {

Float x = 0;
int n = 1e9;
for(int i=0; i<n; i++) {

x *= a;
x += b;

}
return x;

}

This procedure is fairly close to a typical series expansion found in many
special functions. In its direct form the algorithm is unable to take ad-
vantage of instruction level parallelism due to the recursive nature. How-
ever, when inserting an AD type Float=tiny_ad::variable<1,3> as tem-
plate parameter a large portion of the derivatives can in principle be cal-
culated in parallel by the vectorized CPU instructions (SIMD). Indeed, the
generated assembler using g++ -O3 -S for the two cases Float=double and
Float=tiny_ad::variable<1,3> respectively confirmed this theory. The
AD code was able to fill up all CPU registers with derivatives while the dou-
ble version only took advantage of one (128 bit) CPU register.

5.5 Measuring the performance of tiny_ad

Four benchmark examples were constructed to test the performance of tiny_ad.
The first two ’bessel’ and ’pbeta’ are based on some ported special functions
(see later section). The final two examples are toy problems that can be
held up against the theory from the previous section:
template <class Float >
double multiply_add(Float x, Float a, Float b){

Float ans = x + a + b;
int n = 1e7;
for(int i=0; i<n; i++) {

ans = ans + x;
ans = ans * x;

}
return ans;

}

Listing 1: Recursive multiply-add benchmark

template <class Float >
double exp_sin_cos(Float x, Float a, Float b){

Float ans = x + a + b;



int n = 1e6;
for(int i=0; i<n; i++) {

ans = exp(ans);
ans = sin(ans);
ans = cos(ans);

}
ans;

}

Listing 2: Recursive exp-sin-cos benchmark

A small R-script can be used to calculate the expected work ratios of deriva-
tives versus function values. The machine used for the benchmark has ca.
equal work for multiply and add whereas a builtin special function takes
roughly 14 times longer to evaluate:

w0 <- c(’add’=1, ’mult’=1, ’specfunc’=14)
A <- function(n) matrix(c(1+n, n, 0, 0, 1+2*n, n, 0, 0, 2),3)
work.ratio <- function(algo=c(1,1,0), n=3, order=1) {

wd <- matrix(0, 3, order+1)
wd[,1] <- w0
for(i in seq_len(order)) wd[,i+1] <- A(n) %*% wd[,i]
wd <- t(algo) %*% wd
colnames(wd) <- 0:order
wd / wd[1]

}

For the multiply-add benchmark we get:

> work.ratio(c(1,1,0), 3, order=3)
0 1 2 3

[1,] 1 7 49 343

For the exp-sin-cos benchmark we get:

> work.ratio(c(0,0,1), 3, order=3)
0 1 2 3

[1,] 1 2.214286 6.571429 30.71429



function order elapsed1 T (d)/T ( f )1 T (d)/T ( f )2 T (d)/T ( f )3

bessel 0 0.01 1.00 1.00 1.00
bessel 1 0.02 3.20 3.80 2.30
bessel 2 0.07 14.80 24.00 17.30
bessel 3 0.46 91.40 133.50 140.80
pbeta 0 0.01 1.00 1.00 1.00
pbeta 1 0.08 12.70 14.50 5.00
pbeta 2 0.42 69.30 51.50 45.30
pbeta 3 3.13 521.50 334.00 420.60
multiply_add 0 0.02 1.00 1.00 1.00
multiply_add 1 0.13 6.90 1.50 1.40
multiply_add 2 0.81 42.50 13.50 31.40
multiply_add 3 6.66 350.70 131.30 282.10
exp_sin_cos 0 0.05 1.00 1.00 1.00
exp_sin_cos 1 0.09 1.70 1.50 1.60
exp_sin_cos 2 0.30 5.50 3.60 5.30
exp_sin_cos 3 1.35 24.50 13.60 21.80

Table 3: Gcc compiler results. Timings of four different test functions for
derivative orders 0 to 3 (elapsed) and relative time of derivative calculations
relative to function value (T (d)/T (v)). Superscript denotes the following
three different configurations: 1. The tiny_vec vector class with compiler
flag −O2. 2. The tiny_vec vector class with compiler flag −O3−march =
native. 3. The Eigen vector class with compiler flag −O3−march = native.

The actual benchmark results, using the gcc compiler 1 , are shown in Table
3. Note how well the expected work ratios of derivative to function value
match the theoretical work ratio (column T (d)/T ( f )1 last eight rows). The
next column (T (d)/T ( f )2) shows the effect of enabling 128 bit SIMD in-
structions through a compiler flag. For the toy examples we get a 2-4 fold
speedup. This is also in line with the theory from the previous section: The
SIMD instructions benefit the derivatives - not the function value. We do
not get any consistent imrovement using Eigen’s vector class instead of our
own ’tiny_vec’ class (T (d)/T ( f )3) for the toy examples.

1gcc version 5.4.0



function order elapsed1 T (d)/T ( f )1 T (d)/T ( f )2 T (d)/T ( f )3

bessel 0 0.00 1.00 1.00 1.00
bessel 1 0.01 2.00 1.70 1.50
bessel 2 0.02 6.00 5.70 17.30
bessel 3 0.17 41.20 42.50 146.00
pbeta 0 0.01 1.00 1.00 1.00
pbeta 1 0.02 2.40 2.80 2.70
pbeta 2 0.15 21.00 21.30 34.50
pbeta 3 0.90 128.00 194.30 376.50
multiply_add 0 0.02 1.00 1.00 1.00
multiply_add 1 0.03 1.50 1.50 1.50
multiply_add 2 0.26 13.80 15.30 21.80
multiply_add 3 1.77 93.10 92.70 214.50
exp_sin_cos 0 0.05 1.00 1.00 1.00
exp_sin_cos 1 0.08 1.50 1.50 1.60
exp_sin_cos 2 0.18 3.30 3.30 4.30
exp_sin_cos 3 0.62 11.30 11.40 15.60

Table 4: Clang compiler results. Timings of four different test functions for
derivative orders 0 to 3 (elapsed) and relative time of derivative calculations
relative to function value (T (d)/T (v)). Superscript denotes the following
three different configurations: 1. The tiny_vec vector class with compiler
flag −O2. 2. The tiny_vec vector class with compiler flag −O3−march =
native. 3. The Eigen vector class with compiler flag −O3−march = native.

For comparison we tried to run the exact same benchmark using the clang
compiler 2 (Table 4). Note that the meaning of compiler optimization flags
are not the same on clang vs gcc. The clang compiler enables SIMD already
at ’-O2’. Clang does a remarkably good job in this benchmark: the gradient
to function work ratio does not exceed 2.5 for any of the examples! We do
not have any good explanation for this result.

6 Porting C-code to using tiny_ad

The tiny AD library has been used to differentiate complex algorithms writ-
ten in C. One such example is the file ’toms708.c’ (part of the R source code
tree) containing more than 2200 lines of helper functions to deal with all
corner cases of the beta CDF function! This C code is much more accurate
and almost 10 times as fast as the corresponding function from numerical
recipies. Porting the functions to tiny AD was for the most part a search-

2clang version 3.8.0



replace operation. Here is a small fragment of the code to demonstrate the
process:
static double betaln(double a0 , double b0)
{
/* -----------------------------------------------------------------------
* Evaluation of the logarithm of the beta function ln(beta(a0 ,b0))
* ----------------------------------------------------------------------- */

static double e = .918938533204673; /* e == 0.5*LN(2*PI) */

double
a = min(a0 ,b0),
b = max(a0 , b0);

if (a < 8.) {
if (a < 1.) {

/* ----------------------------------------------------------------------- */
// A < 1
/* ----------------------------------------------------------------------- */

if (b < 8.)
return gamln(a) + (gamln(b) - gamln(a+b));

else
return gamln(a) + algdiv(a, b);

}
/* else */

/* ----------------------------------------------------------------------- */
// 1 <= A < 8
/* ----------------------------------------------------------------------- */

double w;
if (a < 2.) {

if (b <= 2.) {
return gamln(a) + gamln(b) - gsumln(a, b);

}
/* else */

if (b < 8.) {
w = 0.;
goto L40;

}
return gamln(a) + algdiv(a, b);

}
// else L30: REDUCTION OF A WHEN B <= 1000

if (b <= 1e3) {
int n = (int)(a - 1.);
w = 1.;
for (int i = 1; i <= n; ++i) {
a += -1.;
double h = a / b;
w *= h / (h + 1.);

}
w = log(w);

if (b >= 8.)
return w + gamln(a) + algdiv(a, b);

// else
L40:

// 1 < A <= B < 8 : reduction of B
n = (int)(b - 1.);
double z = 1.;
for (int i = 1; i <= n; ++i) {
b += -1.;
z *= b / (a + b);

}
return w + log(z) + (gamln(a) + (gamln(b) - gsumln(a, b)));

}
// Stripped

} /* betaln */

Listing 3: Original C-code fragment from ’toms708.c’

We start by changing the C function to a C++ template function: The key-
word template<class Float> is placed in front of the function declaration
and ’double’ is replaced by ’Float’. Note that it is safe to leave static constants
as is. Often, these steps would suffice. However, in this case compilation of
the source reveals that a few more changes are required.



1. The code contains a ’goto L40’ and there’s a declaration ’int n’ in be-
tween the ’goto’ and the tag ’L40:’. This is not allowed in C++ (but
it’s OK in C). The fix is simply to move the declaration to before the
’goto’ - see the code below.

2. The code contains a cast from double to int ’(int)(a - 1.)’. It would be
unsafe to let the tiny AD library allow implicit cast from an AD type to
integer. We must manually inform tiny_ad that the cast is intentional
by changing the line to ’(int)trunc(a - 1.)’ - see code below.
Note that explicit casts (introduced in C++11) could be implemented
for the AD type. However, for portability reasons we avoid dependen-
ing on this feature.

template <class Float > static Float betaln(Float a0, Float b0)
{
/* -----------------------------------------------------------------------
* Evaluation of the logarithm of the beta function ln(beta(a0 ,b0))
* ----------------------------------------------------------------------- */

static double e = .918938533204673; /* e == 0.5*LN(2*PI) */

Float
a = min(a0 ,b0),
b = max(a0 , b0);

if (a < 8.) {
if (a < 1.) {

/* ----------------------------------------------------------------------- */
// A < 1
/* ----------------------------------------------------------------------- */

if (b < 8.)
return gamln(a) + (gamln(b) - gamln(a+b));

else
return gamln(a) + algdiv(a, b);

}
/* else */

/* ----------------------------------------------------------------------- */
// 1 <= A < 8
/* ----------------------------------------------------------------------- */

Float w;
int n;
if (a < 2.) {

if (b <= 2.) {
return gamln(a) + gamln(b) - gsumln(a, b);

}
/* else */

if (b < 8.) {
w = 0.;
goto L40;

}
return gamln(a) + algdiv(a, b);

}
// else L30: REDUCTION OF A WHEN B <= 1000

if (b <= 1e3) {
n = (int)trunc(a - 1.);
w = 1.;
for (int i = 1; i <= n; ++i) {
a += -1.;
Float h = a / b;
w *= h / (h + 1.);

}
w = log(w);

if (b >= 8.)
return w + gamln(a) + algdiv(a, b);

// else
L40:

// 1 < A <= B < 8 : reduction of B
n = (int)trunc(b - 1.);
Float z = 1.;



for (int i = 1; i <= n; ++i) {
b += -1.;
z *= b / (a + b);

}
return w + log(z) + (gamln(a) + (gamln(b) - gsumln(a, b)));

}
// Stripped

} /* betaln */

Listing 4: Resulting C++-code fragment from ’toms708.cpp’

6.1 Fixing wrong derivatives

Even if an algorithm compiles with AD types it is not certain that the deriva-
tives are correct! We recommend checking the derivatives against numerical
derivatives (e.g. using R’s numDeriv package) up to at least second order on
a fine grid. If the derivatives turn out to be wrong it can be a big challenge
to locate the root of the problem in a large code base. To this end a code
coverage tool such as ’gcov’ (part of gcc) turned out extremely valuable. It
can quickly point out the relatively small subset of code lines executed for a
given special case of the parameters.
In this section we summarize the code issues we ran into while checking the
derivatives.

Underflow protection While porting the besselK function we encountered
the following code:
if (nu < sqxmin_BESS_K) {

nu = 0.;
}

Here nu is a parameter and sqxmin_BESS_K is equal to 1.49e-154. The
branch was entered with the frequently occuring value nu=0. The statement
has no effect if nu is of double type. However, for an AD type the statement
nu=0 sets both the value and derivatives to zero! We out-commented the
redundant line.

Redundant absolute value A redundant absolute value
if ( 0. <= nu && nu < 1. ) {

// ...
nu = fabs(nu);
// ...

}

had no effect for the original code. However, for AD types we got a wrong
derivative in the case nu=0. This is because tiny_ad differentiates abs to the
sign function which takes the value 0 in 0. We may consider changing this
derivative to its right continuous version.



Point-wise special case A frequently occuring problem causing non-differentiability
is when an algorithm has special cases for certain parameter values. Such
special cases almost surely doesn’t hold in a neighborhood around the pa-
rameter value. For instance the following lines appeared in the besselI func-
tion:
if (0. <= nu && nu < 1.) {

if (nu != 0.)
sum *= (Rf_gamma_cody (1. + nu) * pow(*x * .5, -nu));

}

This is a point-wise special case for the parameter value nu==0 stating that
in this case the multiplier evaluates to one, hence can be omitted. However,
the opimization corrupts the derivative in the special case. The solution is
to out-comment the if-statement.

Minimum-maximum Minimum and maximum operators must be care-
fully thught out before using with AD. The following code is used in the
pbeta function to swap a and b if b is smallest:
#define min(a,b) ((a < b)?a:b)
#define max(a,b) ((a > b)?a:b)
a = min(a0 , b0);
b = max(a0 , b0);

In an AD context the problem arise when a = b. In this case min(a,b) and
max(a,b) both return b. Either min or max must be redefined. We made the
change #define min(a,b) ((a <= b)?a:b).

Series convergence One of the most tricky situations encountered is when
the number of iterations in a series suffice for the function value but not for
the derivatives. This problem occured in several of the pbeta series expan-
sions. Here is one example:
/* ----------------------------------------------------------------------- */
/* COMPUTE THE SERIES */
/* ----------------------------------------------------------------------- */
Float tol = eps / a,

n = 0.,
sum = 0., w;

Float c = 1.;
do { // sum is alternating as long as n < b (<==> 1 - b/n < 0)

n += 1.;
c *= (0.5 - b / n + 0.5) * x;
w = c / (a + n);
sum += w;

} while (n < 1e7 && fabs(w) > tol);

Mostly, the loop would run for many iterations - except for integer values
of the parameter b. When b = 1 the variable c becomes zero and the loop
terminates after the first iteration even if the derivatives require more iter-
ations to converge. We introduced a new function max_fabs that returns
the maximum absolute value of all AD struct members (in the double case
it is just the fabs function). We then replaced fabs with max_fabs in all
do-while loops.



6.2 List of ported algoritms

The ported algorithms are located in the tiny_ad folder. We intended to
make them as selfcontained as possible. In particular there are no R-dependencies
and all required defines are part of each of the separate routines although
this involves a certain amount of repetition. It should thus be equally easy
to use the routines from ADMB and TMB.

Most algorithms are ported C-code from R (version 3.3.0). One function
(dtweedie) was obtained from the R-package cplm (version 0.7-4). The
ported versions are kept as close to the originals as possible in order to ease
maintenance. If an original version is patched there is a chance the patch
may apply unchanged to the ported version. However, given the maturity
of R base we find it unlikly that any critical changes will take place to the
original C-code.

A list of ported functions is shown in Table 5. Note that both ADMB and
TMB already have the gamma function. However, not in templated form
required by tiny_ad. The gamma function is a common dependency of all
the algorithms except integrate.
The Gauss kronrod integrate routine was implemented in its original one-
dimensional form and an interface for multi-dimensional integration was
added.

Algorithm Origin License Include
gamma and log-gamma Base R GPL-2 gamma/gamma.hpp
pbeta Base R GPL-2 beta/pbeta.hpp
bessel(K,I,Y,J) Base R GPL-2 bessel/bessel.hpp
Gauss-Kronrod integrate Base R GPL-2 integrate/integrate.hpp
dtweedie cplm GPL-2 tweedie/tweedie.hpp

Table 5: Overview of ported algorithms.

6.3 Checking derivatives of ported algoritms

The ported algorithms have been included in TMB as atomic functions. Au-
tomated derivatives checks up to order 2 have been added as part of the
TMB distribution (github version). The tests are located in tmb_syntax/check_derivatives.R
and run by sourcing this R-script. The script sets appropriate grids for the
tested functions. For the Bessel function was used:

grid <- expand.grid(1:100, 1:100) / 10

i.e. 10000 equally spaced grid cells in the range 0 to 10 for each parameter.
For the besselK function we get the output:



=================================================================
besselK

Value relative error:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000e+00 0.000e+00 0.000e+00 1.175e-17 0.000e+00 7.742e-16

Worst value grid-point (numderiv/ad):
x = 1.3 7.6
ND = 28194.91
AD = 28194.91

Gradient relative error:
Min. 1st Qu. Median Mean 3rd Qu. Max.

4.500e-14 5.018e-12 8.342e-12 6.142e-11 1.143e-11 1.367e-08

Worst gradient grid-point (numderiv/ad):
x = 7.2 0.1
ND = -0.0003664404 4.47796e-06
AD = -0.0003664404 4.47796e-06

Hessian relative error:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000e+00 1.800e-10 1.010e-09 4.357e-07 3.660e-09 2.874e-04

Worst hessian grid-point (numderiv/ad):
x = 0.1 10
ND = 2.043369e+22 -9.930309e+20 -9.930309e+20 5.1336e+19
AD = 2.043369e+22 -9.933164e+20 -9.933164e+20 5.134229e+19

The output shows a summary of the relative error for the function value,
gradient and Hessian. It also points out the grid point for which value,
gradient and Hessian attain the largest relative error. Similar output for the
pbeta function is:

=================================================================
pbeta

Value relative error:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

Worst value grid-point (numderiv/ad):
x = 0.105 0.19 0.21
ND = 0.3650588
AD = 0.3650588

Gradient relative error:
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.912e-12 1.523e-11 2.349e-11 4.029e-11 3.879e-11 9.965e-10

Worst gradient grid-point (numderiv/ad):
x = 0.905 0.19 1.61
ND = 0.0554032 -0.01833799 0.00891067
AD = 0.0554032 -0.01833799 0.00891067

Hessian relative error:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000e+00 0.000e+00 1.000e-10 1.061e-05 6.000e-10 1.599e-03

Worst hessian grid-point (numderiv/ad):



x = 0.905 0.19 0.21
ND = 5.422079 2.121844 0.09008768 2.121844 3.954561 2.003997 0.09008768 2.003997 -8.33119
AD = 5.422844 2.121957 0.0899437 2.121957 3.954561 2.003997 0.0899437 2.003997 -8.33119

Judging from this output both value and gradient are very accuarate. How-
ever, there seems to be some disagreement between the numeric Hessian
and the AD Hessian in the point (0.905,0.19,0.21). Is the AD derivative
wrong or is the discrepancy caused by inaccuracy in the finite difference
approximation ? Fortunately there is an alternative way to calculate this
Hessian. Given that we trust the AD gradient we can numerically differenti-
ate this gradient to get the Hessian:

> jacobian(obj$gr, c(0.905, 0.19, 0.21))
[,1] [,2] [,3]

[1,] 5.4228441 2.121957 0.0899437
[2,] 2.1219567 3.954561 2.0039972
[3,] 0.0899437 2.003997 -8.3311902

The hessian is in perfect aggrement with the AD Hessian. The maximum rel-
ative error is ≈ 10−10. Hence in this case the numDeriv Hessian was wrong
- not the AD Hessian.
The example illustrates that automatic derivatives checking could be im-
proved by only using finite differences to first order:

1 Check 1st order AD against 1st order numerical derivative.

2 Check 2nd order AD against 1st order numerical derivative of 1st order
AD.

3 Check 3rd order AD against 1st order numerical derivative of 2nd or-
der AD.

7 Using tiny_ad in ADMB

ADMB builds the stack of operations every time a given function is evalu-
ated, so (unlike in TMB) reverse mode automatic differentiation can han-
dle some conditional expressions, which are common in special functions.
There are however many other reasons why tiny_ad is interesting to include
in ADMB.

Tiny_ad is an elegant implementation of forward mode automatic differenti-
ation. Forward mode automatic differentiation is efficient for functions with
few input arguments (e.g. less than around 5). Forward mode is further
advantageous if the function consists of a high number of operations, as for-
ward mode does not need to store all these operations (contrary to reverse
mode).

Special functions has often been implemented in AD Model Builder by first
obtaining the simplest possible C++ code to evaluate the function (often



from Numerical Recipes) and then either using reverse mode automatic dif-
ferentiation (which may be inefficient) or implementing the derivatives by
hand (which may be prone to errors).

With tiny_ad it should be possible — and even efficient — to get the deriva-
tives without hand written derivatives, which should enable ADMB to use
the best C++ code to evaluate the functions.

7.1 Including the code in ADMB.

Tiny_ad is included into ADMB as two short files, which are copied into the
files:
admb/src/tools99/tiny_ad.hpp
admb/src/tools99/tiny_vec.hpp

The first file is the forward mode automatic differentiation code to any order
and the second file is a convenient and efficient vector class, which is used
by tiny_ad.

The functionality is made available both for developers adding code to ADMB
and for users writing support functions in their model templates. To make
this possible the Makefiles are modified to copy these files to the include
folder, and the files admb/src/linad99/fvar.hpp and admb/src/df1b2-separable/df1b2fun.h
are updated to include tiny_ad for use in both standard (fixed effects only)
ADMB and with random effects.

7.2 Using from user template — fixed effects

Using tiny_ad to calculate the first order derivative of a simple one parame-
ter function may be a bit excessive, but is the natural first example to illus-
trate its use. Consider the function f (x) = exp(−1

2 x2) as implemented in the
following complete ADMB program:

1 GLOBALS_SECTION
2 #include <fvar.hpp >
3
4 template <class Float >
5 Float errf(Float x){
6 Float y=exp(-0.5*x*x);
7 return y;
8 }
9

10 dvariable errf(dvariable x){
11 typedef tiny_ad ::variable <1, 1> Float;
12 Float x_ (value(x), 0);
13 Float ans=errf(x_);
14 dvariable y;
15 value(y)=ans.value;
16 tiny_vec <double , 1> der = ans.getDeriv ();
17 AD_SET_DERIVATIVES1(y,x,der [0]); // 1 dependent variable
18 return y;
19 }
20
21 DATA_SECTION
22



23 PARAMETER_SECTION
24 init_number x;
25 !! x=2;
26 objective_function_value f;
27
28 PROCEDURE_SECTION
29 f=square(errf(( dvariable)x));

admbex/simpletiny.tpl

A lot of things are happening here:

line 4-8 The function is defined, but as a template type, which is required
for use with tiny_ad.

line 10-19 The dvariable type function is defined, which is the function
the user will be calling (line 10-19).

line 11 Within the function the type of derivative object is defined. The first
argument is the derivative order (here 1) and the second argument is
the number of parameters to the function (here 1).

line 12 The value of the function argument x is copied into an argument x_
of the newly declared type. The 0 indicates argument number starting
from zero.

line 13 The function is evaluated with the tiny_ad typed argument x_. The
returned object contain both the function value and the forward mode
derived gradient (here of length 1).

line 14-15 The dvariable type object y to be returned by the function is
declared and it is assigned the value from the function evaluation.

line 16 The gradient is extracted from the tiny_ad object and stored in a
tiny_ad vector object (this is necessary even when the gradient is of
length one).

line 17 The value and derivative are stored with the macro AD_SET_DERIVATIVES1.
Conveniently these simplifying macros exists to store up to 4 depen-
dent variables, which approximately covers the number of dependent
variables where forward mode AD is efficient.

line 18 Finally the calculated dvariable is returned.

The remaining code is to wrap it into a minimal standard AD Model Builder
program, which is used to test the derivative by running it with the -dd 0
flag.



7.3 Using from user template — random effects

For code which is intended to be used with random effects the first, second,
and third derivatives are all needed and must be specified. Tiny_ad can
automatically calculate this and the relevant derivatives can be accessed via
statements like these:

typedef tiny_ad ::variable <3, 1> Float;
Float x_ (value(x), 0);
Float ans=errf(x_);
double val=ans.value.value.value;
tiny_vec <double , 1> der1 = ans.value.value.getDeriv ();
tiny_vec <double , 1> der2 = ans.value.getDeriv ();
tiny_vec <double , 1> der3 = ans.getDeriv ();

Notice that now the tiny_ad variable is declared to order 3. After these lines
the three vectors der1, der2, and der3 contain the first, second, and third
derivatives respectively.

Storing the derivatives in ADMB is a bit more work for random effects mod-
els. The following code illustrates how it is done:

df1b2variable tmp;
value(tmp)=val;
double * xd=x.get_u_dot ();
double * tmpd=tmp.get_u_dot ();
for (unsigned int i=0;i<df1b2variable ::nvar;i++)
{

*tmpd++ = der1 [0] * *xd++;
}
f1b2gradlist ->write_pass1 (&x,&tmp ,der1[0],der2[0],der3 [0]);

// x f(x) df/dx ddf/dxx dddf/dxxx
return tmp;

First the variable to be returned is declared and its value is assigned. Next
the pointers to the existing gradients are extracted. The loop uses forward
mode AD to assign the gradient to the function value. Finally all the com-
puted derivatives are written, and the function result is returned.

The collected example with tiny_ad adjoint code for both fixed and random
effects models is included here:
GLOBALS_SECTION

#include <df1b2fun.h>

template <class Float >
Float errf(Float x){

Float y=exp(-0.5*x*x);
return y;

}

dvariable errf(dvariable x)
{

typedef tiny_ad ::variable <1, 1> Float;
Float x_ (value(x), 0);
Float ans=errf(x_);
dvariable y;
value(y)=ans.value;
tiny_vec <double , 1> der = ans.getDeriv ();
AD_SET_DERIVATIVES1(y,x,der [0]);
return y;

}

df1b2variable errf(df1b2variable x)
{

typedef tiny_ad ::variable <3, 1> Float;



Float x_ (value(x), 0);
Float ans=errf(x_);
double val=ans.value.value.value;
tiny_vec <double , 1> der1 = ans.value.value.getDeriv ();
tiny_vec <double , 1> der2 = ans.value.getDeriv ();
tiny_vec <double , 1> der3 = ans.getDeriv ();

df1b2variable tmp;
value(tmp)=val;
double * xd=x.get_u_dot ();
double * tmpd=tmp.get_u_dot ();
for (unsigned int i=0;i<df1b2variable ::nvar;i++)
{

*tmpd++ = der1 [0] * *xd++;
}
f1b2gradlist ->write_pass1 (&x,&tmp ,der1[0],der2[0],der3 [0]);
// x f(x) df/dx ddf/dxx dddf/dxxx
return tmp;

}

DATA_SECTION
!! cout <<"Testing double version "<<errf(( double)2.0) <<endl;

PARAMETER_SECTION
init_number x;
random_effects_vector u(1,1);
!! x=2;
objective_function_value f;

PROCEDURE_SECTION
f=square(errf(( dvariable)x+u(1)))+square(u(1));

admbex/simpletinyr.tpl

This example may appear complicated, and it is certainly excessive for this
simple function. The key point is however that any function (in this case
on one variable) can have derivatives computed in this way. No matter how
complicated the computations within the function is. The function needs to
be specified only one time. This is a huge advantages compared to having to
declare essentially the same code many times for different types. Also this
tiny_ad approach completely avoids hand written adjoint code.

7.4 Using tiny_ad to simplfy the AD code base

As a simple example of the usefulness of tiny_ad within the core code for
AD Model builder consider the pbeta function. The core of this function is
a continued fraction function called betacf.

The betacf function does a long series of simple calculations until it con-
verges, so it will potentially require a lot of memory to store all the op-
erations for reverse mode AD. To avoid this the implementation in ADMB
was split into 3 files: 1) to compute just the double value of the function
src/linad99/cbetacf.cpp (∼60 lines), 2) to be used with first derivatives,
which uses hand written adjoint code src/linad99/vbetacf.cpp (∼227
lines), and 3) to be used with random effects (part of file src/df1b2-separable/df1b2bet.cpp).
These three files all contain essentially the same algorithm and code, but
carefully adapted to each use.

When using tiny_ad to setup the same functionality a single file with the al-
gorithm is added src/linad99/betacf_val.hpp (∼60 lines), which is sim-



ilar to the plain double version, except that it is defined for the template
type, as in:
template <class Float >
Float betacf(Float a, Float b, Float x, int MAXIT){
. . .

The three needed versions can now be obtained by defining three small
functions calling this joint piece of code. First, to get a double typed version
is simply:
#include <fvar.hpp >
#include "betacf_val.hpp"
double betacf(const double a, const double b, const double x, int MAXIT){

typedef double Float;
return betacf <Float >(a,b,x,MAXIT);

}

Second, to get a version including 1. derivatives a version supporting dvariable
is needed:
#include <fvar.hpp >
#include "betacf_val.hpp"

dvariable betacf(const dvariable& a, const dvariable& b, const dvariable& x, int MAXIT)
{

typedef tiny_ad ::variable <1, 3> Float;
Float a_ (value(a), 0);
Float b_ (value(b), 1);
Float x_ (value(x), 2);
Float ans = betacf <Float >(a_ , b_ , x_, MAXIT);
tiny_vec <double , 3> der = ans.getDeriv ();

dvariable hh;
value(hh) = ans.value;
AD_SET_DERIVATIVES3(hh ,a,der[0],b,der[1],x,der [2]);
return hh;

}

Notice that compared to the example of a simple one parameter shown
above only a couple of things need to be changed. The tiny_ad variable
need to be declared of dimension 3, a corresponding Float of each pa-
rameter must be declared and numbered 0,1, and 2. Finally the macro
AD_SET_DERIVATIVES3 must be used to update the derivatives. The impor-
tant thing to notice is that it was not necessary to repeat the code of the
actual function betacf.

To get a version with up to 3. order derivatives, which is needed for models
including random effects, a version of type df1b2variable must be defined:
#include <df1b2fun.h>
#include "../ linad99/betacf_val.hpp"

df1b2variable betacf(const df1b2variable& a,const df1b2variable& b, const df1b2variable& x,
int MAXIT)

{
typedef tiny_ad ::variable <3, 3> Float;
Float a_ (value(a), 0);
Float b_ (value(b), 1);
Float x_ (value(x), 2);
Float ans = betacf <Float >(a_ , b_ , x_, MAXIT);
double val=ans.value.value.value;
tiny_vec <double , 3> der1 = ans.value.value.getDeriv ();
tiny_vec <double , 9> der2 = ans.value.getDeriv ();



tiny_vec <double , 27> der3 = ans.getDeriv ();

df1b2variable tmp;
value(tmp)=val;
double * xd=a.get_u_dot ();
double * yd=b.get_u_dot ();
double * zd=x.get_u_dot ();
double * tmpd=tmp.get_u_dot ();
for (unsigned int i=0;i<df1b2variable ::nvar;i++)
{

*tmpd++ = der1 [0] * *xd++ + der1 [1] * *yd++ + der1 [2] * *zd++;
}
if (! df1b2_gradlist :: no_derivatives)
{

f1b2gradlist ->write_pass1 (&a,&b,&x,&tmp ,
der1[0],der1[1],der1[2],
der2[0],der2[1],der2[2],der2[4],der2[5],der2[8],
der3[0],der3[1],der3[2],der3[4],der3[5],der3[8],der3 [13], der3 [14], der3 [17], der3 [26]);

}
return tmp;

}

Also for the 3rd derivatives version a few things are different compared to
the simple one parameter version above. Again tiny_ad variable need to
be declared of dimension 3, and corresponding Float of each parameter
must be declared and numbered 0,1, and 2. Next the 1st derivative is now
of length 3, the 2nd derivative is of length 9, and the 3rd derivative is of
length 27.

The forward loop to assign the gradient to the function value is also differ-
ent now. The existing gradients of all three parameters must be extracted,
multiplied with the corresponding 1st order derivatives, and added to the
functions gradient.

Finally all the gradient information is written to the stack, but in ADMB only
the unique derivatives should be written, which are the ones written here.

This may look complicated, but it is less so that the code originally in ADMB.
It is only a fraction of the original amount of code. The code for the algo-
rithm is only there ones. No manual adjoint code is required. This recipe for
adding 1, 2, 3 parameter functions is wrapped in macros (see section 7.6)
which makes it really easy to add ’computationally heavy’ functions of few
parameters.

7.5 Efficiency of tiny_ad in ADMB

To compare the effiency of tiny_ad to hand written adjoint code, the follow-
ing ADMB code was used:

1 DATA_SECTION
2 vector x(1 ,20000)
3 !! x.fill_seqadd (0 ,.00005);
4 vector y(1 ,20000)
5 !! y=pbeta(x,0.3 ,0.4);
6
7 PARAMETER_SECTION
8 init_number loga
9 init_number logb

10 sdreport_number a
11 sdreport_number b



12 objective_function_value nll
13
14 PROCEDURE_SECTION
15 nll =0;
16 a=exp(loga);
17 b=exp(logb);
18 dvar_vector pred=pbeta(( dvar_vector)x,a,b);
19 nll=sum(square(y-pred));

admbex/pppbeta/pbeta.tpl

This simply does least squares estimation of pbeta compared to a large num-
ber (20000) of precomputed values. ADMB with hand written adjoint code
used 1.7s to optimize this model, but ADMB with the new tiny_ad used only
0.8s. Both versions gave identical results. So the new version with simpler
code, on hand written adjoint code and no repeated code, was more than
twice as fast in a purely fixed effect model.

For a similar model including random effects, which then invokes up to third
order derivatives, a similar difference is seen. The model was fitted in 8.5s
with the new tiny_ad code in place, but in 18.0s with the old code base.

This example has focused on an example where the replaced function was
the main part of the computations. In a real application the difference will
be smaller, but the important thing is that the code base can be simplified
and made more efficient at the same time by using tiny_ad.

7.6 Macro interface to tiny_ad in ADMB

The process described above for using tiny_ad within AD Model Builder for
user defined functions is a bit complicated. The tiny_ad tool is the perfect
tool for functions with few parameters, but requiring a long list of calcu-
lation. For such functions it can create efficient and exact derivatives —
without writing long calculations to the stack. To make this feature easily
accessible to users of ADMB three convenient macros were included in AD
Model builder. The following code show how the simplest of the three is
implemented:

#define TINYFUN1(FUN ,par1) \
\

double FUN(double par1){ \
return FUN <double >(par1); \

} \
\

dvariable FUN(dvariable par1){ \
typedef tiny_ad ::variable <1,1> Float; \
Float par1##_ (value(par1), 0); \
Float ans=FUN(par1##_); \
dvariable y; \
value(y)=ans.value; \
tiny_vec <double , 1> der = ans.getDeriv (); \
AD_SET_DERIVATIVES1(y,par1 ,der [0]); \
return y; \

} \
\

dvariable FUN(prevariable par1){ \
return FUN(( dvariable)par1); \

} \
\



df1b2variable FUN(df1b2variable par1){ \
typedef tiny_ad ::variable <3, 1> Float; \
Float par1##_ (value(par1), 0); \
Float ans=FUN(par1##_); \
double val=ans.value.value.value; \
tiny_vec <double , 1> der1 = ans.value.value.getDeriv (); \
tiny_vec <double , 1> der2 = ans.value.getDeriv (); \
tiny_vec <double , 1> der3 = ans.getDeriv (); \

\
df1b2variable tmp; \
double * xd=par1.get_u_dot (); \
double * tmpd=tmp.get_u_dot (); \
*tmp.get_u()=val; \
for (unsigned int i=0;i<df1b2variable ::nvar;i++){ \

*tmpd++ = der1 [0] * *xd++; \
} \
if (! df1b2_gradlist :: no_derivatives){ \

f1b2gradlist ->write_pass1 (&par1 ,&tmp ,der1[0],der2[0],der3 [0]); \
} \
return tmp; \

}

admb/src/tools99/tiny_wrap.hpp

The code shown adds a macro called TINYFUN1, which is to be called with
a function name and the name of the one parameter the function is a func-
tion of. The macro then generates different versions of the code needed
for evaluation with double, dvariable, and df1b2variables, and the fast
derivatives are transferred correctly to ADMB’s derivative structure.

Macros are added for functions of 1, 2, and 3 parameters and the macros are
named TINYFUN1, TINYFUN2, and TINYFUN3 respectively. The code for these
macros are added to ADMB in the file: admb/src/tools99/tiny_wrap.hpp.

The first example of how to use these macros is to take a simple function and
verify that the derivatives are right. Consider the following implementation
of a Beverton-Holt model:
GLOBALS_SECTION

#include <df1b2fun.h>
template <class Float >
Float logBH(Float ssb , Float loga , Float logb){

return loga+log(ssb)-log (1+exp(logb)*ssb);
}
TINYFUN3(logBH ,ssb ,loga ,logb);
VECTORIZE3_ttt(logBH);

DATA_SECTION
init_int n
init_vector ssb(1,n)
init_vector logR(1,n)

PARAMETER_SECTION
init_number loga;
init_number logb;
init_number logSigma;
sdreport_number sigmaSq;
vector pred(1,n);
objective_function_value nll;

PROCEDURE_SECTION
sigmaSq=exp (2.0* logSigma);
pred=logBH(( dvar_vector)ssb ,loga ,logb);
nll =0.5*(n*log(2* M_PI*sigmaSq)+sum(square(logR -pred))/sigmaSq);

admb/tests/tinyfun/tinyfun.tpl

The function is added as a template function of type Float, then the macro is
called, which creates functions of all types needed in the following program.
The final macro is to allow vectorized calls.



This code ran and gave exactly the same results (and derivatives) as a similar
implementation where the function was implemented via dvariables. The
run times were also the same, so even with a simple example as this no
efficiency is lost by using tiny_ad.

A simple way to illustrate what happens if the complexity of the function in-
creases is to modify the function in this example. Instead of simply comput-
ing the function value the function is changed to compute the same function
value a high number of times and return the average. The modified function
returns the same value with the same derivatives, but the internal compu-
tation is a much longer chain of operations. The code for the modified
function is:

Float logBH(Float ssb , Float loga , Float logb){
Float s=0;
for(int i=1; i <=200000; ++i){s+=loga+log(ssb)-log(1+exp(logb)*ssb);}
return s/200000;

}

If this code is used with tiny_ad in the example, then the full minimization
is done in less than a minute and with almost no memory used. If the
same function is declared with the dvariable type (not using tiny_ad) then
the minimization takes 6 minutes and uses more than 3.2GB of memory.
This illustrates that complex functions can be made much more efficient
by tiny_ad without making the code more complicated and without hand
written adjoint code.

7.7 Using R’s integrate code in ADMB

The C-code for R’s integrate function is more than 2K lines and it would
have been a big, difficult, and error-prone task to write the adjoint code up
to 3rd order by hand. Having included tiny_ad in AD Model builder makes
it possible to take such big chunks of code, modify it semi-automatically, and
use it.

The modification of the code to use Float as the numeric type is described
above. ADMB is extended with the following files
admb/src/tools99/integrate.cpp
admb/src/tools99/integrate.hpp
admb/src/tools99/integrate_wrap.cpp

The two first files are copied verbatim from TMB and the last file defines
some macros to make it easier to use the integrate function in ADMB.

The macros can be called with a function to generate a new function with
the same name prepended with integrate, so for instance for a function F
a function called integrateF is generated. The generated function supports



all ADMB types (double, dvariable, and df1b2variable). The simplest of
the macros are coded as:
#define INTEGRATE0(FUN) \
template <class Float > \
Float integrate ##FUN(Float from , Float to){ \

FUN <Float > f; \
Float ans = 0.0; \
return integrate(f,from ,to); \

} \
TINYFUN2(integrate ##FUN ,from ,to)

Notice that the macro uses the already defined macro TINYFUN2, which takes
care of defining all the different typed functions and writing the tiny_ad
calculated derivatives into ADMB’s derivative structure.

As a first example of its use consider calculating the integral:∫
∞

0
exp(−x2)(log(x))2dx

The follow example shows the syntax to be used in ADMB:
GLOBALS_SECTION

#include <df1b2fun.h>

template <class Type >
struct F {

typedef Type Scalar; // Required
Type operator ()(Type x){

return exp(-pow(x,2))*pow(log(x) ,2);
}

};
INTEGRATE0(F)

DATA_SECTION
!! cout <<endl <<integrateF (0,INFINITY)<<endl;
!! ad_exit (0);

PARAMETER_SECTION
init_number dummy;
objective_function_value obj

PROCEDURE_SECTION

admbex/integrate/intex.tpl

First the integrand must be defined in the special structure outlined, then the
macro INTEGRATE0 is called. Finally the newly defined function integrateF(0,INFINITY)
can be called to evaluate the integral. Notice that INFINITY is allowed. The
code runs and gives the correct result.

An integrand can depend on more variables than the one integrated over
and the imported code from R with derivatives from tiny_ad can handle
that. To allow one extra variable the macro INTEGRATE1 is supplied and its
use will be illustrated in the next example. Allowing two or more extra vari-
ables turned out to be problematic in ADMB. Writing externally calculated
3rd order derivatives back into ADMBs derivative structure is currently only
supported for functions up to 3 variables. The code allowing it for exactly
3 variables is about 1000 lines (file df32fun1.cpp). Trying to duplicate the
same setup for 4 or 5 variables would result in many times as many lines.
Long term a more general solution should be developed.



The limit of only writing externally calculated 3rd order derivatives for func-
tions of up to 3 variables sounds restrictive, and it is for the integral function,
but it must be remembered all of the existing AD Model Builder has been
developed within this constrain. Going through the code it appears that
much less hand-written adjoint code is in the random effects part of ADMB
(the part using 3rd derivatives) than in the fixed effects part.

An integral with one extra parameter and an upper and lower limit is a
function of three parameters. If the lower limit is fixed e.g. to −∞, then the
integrand can have two additional parameters, so macros supporting that is
defined. These macros are called LTAIL0, LTAIL1, and LTAIL2, because they
calculate the lower tail of integrands with 0, 1, and 2, additional parameters
respectively. The macros generate functions with the name of the integrand
prepended with ltail.

To illustrate the syntax for additional parameters in the integrand consider
observations from a Poisson process with a parametric intensity function
λ (t) = a(sin(tπ)+ 1) where the unknown parameter is a. The code for its
likelihood involves an integral and can be specified as:
GLOBALS_SECTION

#include <df1b2fun.h>

template <class Type >
struct L {

typedef Type Scalar; // Required
Type a; // Parameters for integrand
Type operator ()(Type x){

return a*(sin(x*M_PI)+1.0);
}

};
INTEGRATE1(L,a);

DATA_SECTION
init_int N;
init_vector X(1,N);

PARAMETER_SECTION
init_number logS
sdreport_number S;
objective_function_value obj

PROCEDURE_SECTION
S=exp(logS);
L<dvariable > l; l.a=S;
obj =0.0;
for(int i=1; i<=N;++i){

obj -= log(l(X(i)));
}
obj+= integrateL (0.,10.,S);

admb/tests/poisp/poisp.tpl

Notice how the additional model parameter enters the defined integrand,
and how it is assigned in the procedure section.

8 Discussion and future work

This project considered many different extensions to both TMB and ADMB.
The selected extensions were implemented in both tools. It was first noticed



that the process of adding a simple custom function is a bit simpler in TMB
compared to in ADMB (see section 3).

An important design difference between TMB and ADMB was identified (see
section 2). ADMB recomputes the stack of operations at each function eval-
uation, whereas TMB uses a pre-setup computational graph. This has big
consequences implementing special functions. Where ADMB can fairly easy
import code from e.g. Numerical Recipes including conditional statements
and loops depending on model parameters that is not possible for TMB.
Hence it was easy for ADMB to get basic simple special functions working.

The problem was mostly solved in TMB by writing a neat efficient forward
AD library tiny_ad (section 5). Forward mode AD does not need a compu-
tational graph to be stored, so it can follow conditional code.

In the process of writing these special functions it was identified that is very
necessary to validate derivative code. This is simple for 1st derivatives in
ADMB but difficult for 2nd and 3rd derivatives. A kludge to extract the 2nd
derivatives from ADMB was derived (section 4.4). It is simple to validate
derivatives from TMB.

The tiny_ad library turned out to be very useful for ADMB also, as it can
be used to import big code chunks into ADMB (section 7), which would
previously had been difficult, as it would either had been inefficient (by
using AD for long calculations), or included a lot of difficult work with hand
written adjoint code. In fact, all the functions ported to TMB can fairly
simply be ported to ADMB. This could e.g. be relevant if one wanted to
improve the precision of pbeta or the bessel functions from the OK, but not
great versions from Numerical Recipes. Macros have been added to make
this process simple, and care has been taken to make all ported functions
standalone.

Finally it was noted that the procedure of writing externally computed deriva-
tives back into ADMB is problematic for higher order derivatives of more
than 3 model parameters. This made some extensions less flexible in the
ADMB versions.

The conclusion is that TMB with the addition of tiny_ad is easier to extend
than ADMB, but most of the extensions were useful to both tools. Collabo-
rating between the two projects is the best way to validate and improving
both tools.

Some final comments and ideas for future issues to improve:

• We managed to implement the suggested special functions pbeta, qbeta,
besselK. The list was exapanded during the project to contain the re-
maining Bessel functions and the Tweedie density function.



• An automatic generator for p functions has been implemented via
the the added a Gauss-Kronrod integrator. The integrator accepts
-INFINITY as lower limit, so if the integrand is a probability density
function then the integrator exactly returns the p function. Further
the integrator is able to calculate other useful integrals.

• An automatic generator of q functions can in principle be constructed
by combining an adaptive Gauss-Kronrod integrator with a Newton
solver. The Gauss-Kronrod integrator is now added to both TMB and
ADMB so it is feasible to implement an automatic q-generator also.
However, in terms of numerical precision and performance it would
be impossible to match specially taylored special functions in e.g. R.
For this reason we have put this idea on hold for now.

• The proposal to implement an exact AD Hessian would require major
re-strucuring for both TMB and ADMB. For a fixed effect model in
ADMB an approach to get the AD hessian is derived in the section on
checking derivatives. In general (for random effects models) an AD
Hessian would be both slower and more memory consuming than the
current approch (finite differences on the AD gradient). If one decides
to implement an AD outer Hessian the most promising aproach might
be to feed tiny_ad into the Laplace approximation and its gradient.

• The interface for adding tiny_ad derived functions has been added to
ADMB so it would require only a small amount of work to add the
ported dtweedie to ADMB. Similarly adding the TMB ported bessel
functions to ADMB would give better presision and allow non-integer
nu parameter.

• Dave’s suggestion w.r.t. importance sampling was not tested, but judged
to be equally easy to test in both TMB and ADMB.

• The forward sweep idea would be unfeasible to carry out in ADMB
because ADMB doesn’t have any examples on how to access the un-
derlying computational graph. It would be possible - but not easy - to
get it working in TMB. One could use the sparsity detection algorithm
as starting point.

• Expanding the template distributions in ADMB to be similar to TMB’s
density namespace would not be meaningful. It would be fairly easy
to add classes and method to give ADMB a similar calling syntax as
in TMB, but the design of ADMB’s random effects, where all calcula-
tions need to be structured in separable functions to preserve a sparse
internal hessian (to get efficient code) would work within these en-
capsulated classes. E.g. a neat class to define a multivariate random



walk would result in slower code than a specifying the increments as
separable functions in the template.

• Develop a general interface for writing externally calculated 2nd and
3rd order derivatives back into AD Model Builder. Currently only an
interface for up to 3 model parameters exists.

• Supplement derivative checks with code coverage analysis so that we
know that all branches of the special functions are tested by the deriva-
tives checker. We might also consider adding tests up to order three.

• The simple scheme presented in this report computes all higher or-
der derivatives without exploiting symmetry of these derivative arrays.
tiny_ad is already equipped to address this issue to some extent. For
instance the unique derivative indices up order 3 wrt 3 parameters is
given by {(i, j,k) : 1 ≤ i ≤ j ≤ k ≤ 3}. This set of 10 derivative indices
is well approximated by the cube {1,2}×{1,3}×{2,3} (appropriately
re-ordered) and the corners (1,1,1), (2,2,2) and (3,3,3). All latter
derivatives (cube and corners) can be directly obtained using tiny_ad
and there’s only one wasted index (2× 2× 2+ 1+ 1+ 1 = 11). Ideas
along these lines might be able to speed up tiny_ad for higher order
derivatives.

• It would be useful to lighten the burden of porting code to using
tiny_ad - especially pointing out lines in the source code where deriva-
tives start to get wrong. Compile time checks would be ideal but this
is probably too difficult to achieve. The second best option could be
a debug mode where the AD class includes finite difference checks up
to any point in the program and triggers abort when finite difference
starts to diverge from AD.
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